Detector system and simulation of the 155 MeV Hydro-Møller polarimeter at MESA

Michail Kravchenko*

PhD student, AG Berger PRISMA+ Cluster of Excellence/ Institute for Nuclear Physics, Johannes Gutenberg University Mainz

MESA-Polarimeter Workshop, 15.06.2023 Helmholtz Institute Mainz, Mainz

*On behalf of the team:

M. Kravchenko^{1,2}, N. Berger^{1,2}, V. Tyukin¹, K. Aulenbacher¹, R. Beminiwattha³, K. Kumar⁴

¹Institute for Nuclear Physics, Johannes Gutenberg University Mainz (JGU) ²PRISMA+ Cluster of Excellence, JGU ³Louisiana Tech University ⁴University of Massachusetts, Amherst

Hydro-Møller polarimeter: target

Atomic Hydrogen target

• Target:

- L_T = 30 cm
- $\rho_T = 3.0 \times 10^{15} \text{ cm}^{-3}$
- non-destructive
 => online measurement
- Atomic magnet trap and superfluid thin He film for suppressing recombination

$$P_{target} = 1 - ε,$$

with $ε \sim 10^{-5}$ @ $B_{Solenoid} = 8.0 T$

~ 0.3 m

Courtesy of V. Tyukin (KPH, JGU), V. Fimushkin and R. Kusaykin (JINR, Dubna)

Hydro-Møller polarimeter: Chicane based design

Hydro-Møller polarimeter: general issues

- Building of the H gas target is not available as initially planned due to the global unexpected and unavoidable circumstances
- As a result, Iron solid target option is being considering as a substitution at the beginning
- Chicane design won't be suitable + has some unpleasant effects (will be discussed later)

Polarimeter design needs to be reconsidered

Hydro-Møller polarimeter: Quadrupole based design

Geant4 simulation: magnets

Solenoid:

Biot-Savart summation approach: thin air core solenoid formed by current loops

PRISMA+ JG U

Bx []]

Geant4 simulation: magnets

Quadrupole:

• Analytical solution (from Wolfram Mathematica) for magnetic field components of an air core quadrupole formed by a set of pairs of loops with opposite currents

PRISMA+ JGU

Detector system and simulation of the 155 MeV Hydro-Møller polarimeter at MESA, Michail Kravchenko | 15.06.23

Geant4 simulation: magnets

Dipole:

- Analytical solution (from Wolfram Mathematica) for magnetic field components of an air core dipole formed by a set of pairs of loops with opposite currents
- Biot-Savart summation approach is possible, but more complicated

C PRISMA+ JGU

Geant4 simulation: global total magnetic field map

Geant4 simulation: model

Particle generators (original + <u>PRad</u>*):

Moller (original + PRad*):

only $\overrightarrow{e^{-}} + \overrightarrow{e^{-}} \rightarrow e^{-} + e^{-} =>$ signal

• Elastic e⁻-p (Mott; PRad* only): only $\overrightarrow{e^{-}} + Z \rightarrow e^{-} => background$

*code of generators was kindly provided by PRAD collaboration (based on Eur. Phys. J. A 51(2015)1) GitHub repository:

https://github.com/JeffersonLab/PRadSim

Geant4 model

Geant4 simulation: model

Simulation parameters:

- E_{beam} = 155 MeV
- Target length:
 - H: 30 cm
 - Fe: 20 μm
- Beam current = 150 μA = 10¹⁵ e⁻/s
 (*Hydrogen target*)
- B_{solenoid} = 8 T
- Moller generator:
 - $E_{electrons} \in [75, 80] \text{ MeV}$
- E-p generator:
 - $\theta_{\text{scat}} \in [0.01, 90] \text{ deg}$

Geant4 simulation: PRad generators

• E_{beam} = 155 MeV => E_{Moller_symm} = 77.5 MeV

Geant4 simulation: PRad generators

PRISMA⁺ JG U Psity

Geant4 simulation: current results

Point-like target

Solenoid:

- I = 40 cm
- r = 5 cm
- B = 8 T
- n_loops = 100

Quad:

- r = 10 cm
- I = 20 cm
- G = 5 T/m
- n_loops = 20 (pairs)

Dipole:

- r = 20 cm
- I = 40 cm
- B = -0.5 T
- n_loops = 30

Geant4 simulation: effect of the Dipole fringe field

The most likely cause:

• Fringe field of the Dipole

Geant4 simulation: effect of the Dipole fringe field

Dipole only

Geant4 simulation: solenoid alignment

Example

Beam displacement (= solenoid misalignment):

- Δx = Δy ~ 1 *mm, @ 8T
- Beam deflection at Quad entrance: Δx = Δy ~ 1 *cm

Geant4 simulation: Moller event rate

E = 155 Mev	Z = 1	curr = 150 uA			
Moller generators (rate, Hz)					
	Moller_VT (Mathematica)	Moller_PRad (elastic)	Moller_PRad (elastic + rad)	Moller_init	
th_lab: ~4.674.63 deg (~77.5MeV)	1.24E+02	1.10E+02	-	1.26E+02	
th_lab: ~4.484.78 deg (75-80 MeV)	3.99E+04	3.53E+04	2.98E+04	4.01E+04	
th_lab: ~3.685.81 deg (60-95 MeV)	2.92E+05	2.87E+05	2.36E+05	2.94E+05	
E = 155 Mev	Z = 26	curr = 150 uA <	— for benchmarkin	g evaluation	
Moller generators (rate, Hz)					
	Moller_VT (Mathematica)	Moller_PRad (elastic)	Moller_PRad (elastic + rad)	Moller_init	
th_lab: ~4.674.63 deg (~77.5MeV)	6.13E+06	5.42E+06	-	6.21E+06	
th_lab: ~4.484.78 deg (75-80 MeV)	1.97E+09	1.74E+09	1.48E+09	1.98E+09	
th_lab: ~3.685.81 deg (60-95 MeV)	1.44E+10	1.42E+10	1.17E+10	1.45E+10	

18 Detector system and simulation of the 155 MeV Hydro-Møller polarimeter at MESA, Michail Kravchenko | 15.06.23

Geant4 simulation: Mott event rate issues

E = 155 Mev	Z = 1	curr = 150 uA			
	Mott (ep) ge	enerators (rate, H	lz)		
	Mott_VT (Mathematica)	Mott_PRad (elastic)	Mott_PRad (elastic + <u>rad</u>)	Mott_PRad (elastic + rad) + energy cut	
~0.1-75 deg (0.07-155 MeV)	2.96E+08	-	7.36E+13	3.68e+10 (75-80MeV) ◀	Moller 7580 MeV rate: 2.98E+04
th_lab: ~4.674.63 deg	5.53E+01	4.70E+01	4.45E+03	-	
th_lab: ~4.484.78 deg	1.78E+04	1.52E+04	1.44E+06	-	
th_lab: ~3.685.81 deg	1.31E+05	1.54E+05	1.85E+07	-	

E = 155 Mev	Z = 26 Mott (ep) ge	curr = 150 uA ◄ enerators (rate, H	← for benchmarkir z)	ng evaluation
	Mott_VT (Mathematica)	Mott_PRad (elastic)	Mott_PRad (elastic + <u>rad</u>)	Mott_PRad (elastic + rad) + energy cut
~0.1-75 deg (0.07-155 MeV)	3.80E+14	-	9.39E+19	1.04e+17 (75-80MeV)
th_lab: ~4.674.63 deg	7.09E+07	6.02E+07	5.77E+09	-
th_lab: ~4.484.78 deg	2.28E+10	1.90E+10	2.78E+12	_
th_lab: ~3.685.81 deg	1.68E+11	1.99E+11	2.34E+13	_

Geant4 simulation: current results

Geant4 simulation: current results

Summary

- Developed framework for the simulation of the Moller polarimeter with optional designs and different type of targets
- Verified and benchmarked Moller generators (including one from the PRad collaboration)
- Implemented realistic field maps for all types of the magnetic elements that are used in the simulation -> no non-physical discontinuities
- <u>Current goal</u>: to build a spectrometer that can utilize Iron target for low beam current polarimetry with an option to install H gas target later on
- Further steps:
 - □ Fixing and benchmarking evaluation of the Mott generator
 - Further simulation for detailed comparison of the design options
 - Optimizations for magnetic elements (positions and specs, etc.) and detector design

Thank you for your attention! Questions/comments?

Backup

Mainz Energy-Recovery Superconducting Accelerator (MESA)

First beam is planned for 2024

<u>Beam</u>:

- Highly polarized (≥85%)
- Current: 150 μ A = 10¹⁵ e⁻/s
- $L \approx 2.4 \cdot 10^{39} \text{ cm}^{-2} \text{s}^{-1}$
- Energy: 155 MeV
- Flip helicity @ 1 kHz

Additional requirement:

• Beam polarization: $\Delta P_b/P_b \le 0.5\%$ $\frac{\text{Goal:}}{\Delta \sin^2 \theta_{W}} \sim 0.14\%$

Issue: beam polarization could vary up to 10% during the run

> need for an online polarimetry

Mainz Energy-Recovery Superconducting Accelerator (MESA)

Method	Physics	Pros	Cons
Mott	$\overrightarrow{e^-} + Z \rightarrow e^-$	Rapid, precise	Solid target => destructive
Compton	$\overrightarrow{e^-} + \overrightarrow{\gamma} \rightarrow e^-$	Non-destructive	Suitable only for high E _{beam}
Møller	$\overrightarrow{e^-} + \overrightarrow{e^-} \rightarrow e^- + e^-$	Rapid, precise	Solid target + concept for a low-density gaseous target

Polarimetry techniques

Mainz Energy-Recovery Superconducting Accelerator (MESA)

Method	Physics	Pros	Cons
Mott	$e^{\rightarrow} + Z \rightarrow e^{-}$	Rapid, precise	Solid target => destructive
Compton	$e \rightarrow e \rightarrow e$	Non-destructive	Suitable only for high E _{beam}
Møller	$\overrightarrow{e^-} + \overrightarrow{e^-} \rightarrow e^- + e^-$	Rapid, precise	Solid target + concept for a low-density gaseous target

Polarimetry techniques

Atomic Hydrogen target (proposal by E. Chudakov and V. Luppov*):

- Non-destructive \rightarrow online measurement;
- Suitable for low-energies (E_{beam} = 155 MeV)
- Overall accuracy: $\Delta P \le 0.14\%$
- Max analyzing power @ $\Theta^{CM} = 90^{\circ} (E_{Møller} = 0.5*E_{beam} = 77.5 \text{ MeV})$
- Pioneering technology \rightarrow technical challenges to solved

*E. Chudakov, V. Luppov IEEE, V. 51, 2004; E. Chudakov, Nuovo Cim, V. C35, 2012

Polarimetry chain @ MESA

MAMI and MESA photo cathodes

Polarimetry techniques

Issue: beam polarization could vary up to 10% during the run

need for an online polarimetry

Polarimetry techniques

Method	Physics	Pros	Cons
Mott	$\overrightarrow{e^-}$ + Z \rightarrow e ⁻	Rapid, precise	Solid target => destructive
Compton	$\overrightarrow{e^{-}} + \overrightarrow{\gamma} \rightarrow e^{-}$	Non-destructive	Suitable only for high E _{beam}
Møller	$\overrightarrow{e^-} + \overrightarrow{e^-} \rightarrow e^- + e^-$	Rapid, precise	Solid target + concept for a low-density gaseous target

Atomic Hydrogen target (proposal by E. Chudakov and V. Luppov*):

- Non-destructive \rightarrow online measurement;
- Suitable for low-energies (E_{beam} = 155 MeV)
- Overall accuracy: $\Delta P \le 0.14\%$
- Pioneering technology \rightarrow technical challenges to solved
- *E. Chudakov, V. Luppov IEEE, V. 51, 2004; E. Chudakov, Nuovo Cim, V. C35, 2012

Hydro-Moller polarimeter: effect of the long target

Effect of solenoid magnetic field and long target

V. Tyukin, KPH

