Detector system and simulation of the 155 MeV Hydro-Møller polarimeter at MESA

Hydro-Møller polarimeter

MESA

Michail Kravchenko

PhD student, AG Berger PRISMA+ Cluster of Excellence/ Institute for Nuclear Physics, Johannes Gutenberg University Mainz

DPG Spring Meeting SMuK 2023, Dresden

The P2 experiment: overview and theory

The weak mixing angle (Weinberg-angle):

Parity violating asymmetry

momentum transfer

Asymmetry:
$$A_{PV} = \frac{G_F Q^2}{4\sqrt{2\pi}\alpha} \left(1 - 4\sin^2\theta_W - F(Q^2)\right)$$

proton form factor (small @ low Q²)

The P2 experiment: overview and theory

Measuring the parity violating asymmetry in e-p-scattering

<u>More about the P2 experiment</u>: presentation "Design and Production of Pixel Strips for the P2 Tracking Detector Modules" (T 148.3), L. Binn

Mainz Energy-Recovery Superconducting Accelerator (MESA)

First beam is planned for 2024

<u>Beam</u>:

- Highly polarized (≥85%)
- Current: 150 μ A = 10¹⁵ e⁻/s
- $L \approx 2.4 \cdot 10^{39} \text{ cm}^{-2} \text{s}^{-1}$
- Energy: 155 MeV
- Flip helicity @ 1 kHz

Additional requirement:

• Beam polarization: $\Delta P_b/P_b \le 0.5\%$ $\frac{\text{Goal}}{\Delta \sin^2 \theta_{W}} \sim 0.14\%$

Issue: beam polarization could vary up to 10% during the run

> need for an online polarimetry

Mainz Energy-Recovery Superconducting Accelerator (MESA)

Suitable polarimetry technique

Method	Physics	Pros	Cons
Møller	$\overrightarrow{e^-} + \overrightarrow{e^-} \rightarrow e^- + e^-$	Rapid, precise; not very high beam energy	Solid target (but concept of a low-density gaseous target)

Atomic Hydrogen target (proposal by E. Chudakov and V. Luppov*):

- Non-destructive \rightarrow online measurement;
- Suitable for low-energies (E_{beam} = 155 MeV)
- Overall accuracy: $\Delta P \le 0.14\%$
- Max analyzing power @ $\Theta^{CM} = 90^{\circ} (E_{Møller} = 0.5*E_{beam} = 77.5 \text{ MeV})$
- Pioneering technology \rightarrow technical challenges to solved

*E. Chudakov, V. Luppov IEEE, V. 51, 2004; E. Chudakov, Nuovo Cim, V. C35, 2012

Hydro-Møller polarimeter: target

Atomic Hydrogen target

• Target:

- L_T = 30 cm
- $\rho_T = 3.0 \times 10^{15} \text{ cm}^{-3}$
- non-destructive
 => online measurement
- Atomic magnet trap and superfluid thin He film for suppressing recombination

$$P_{target} = 1 - ε,$$

with $ε \sim 10^{-5}$ @ $B_{Solenoid} = 8.0 T$

~ 0.3 m

Courtesy of V. Tyukin (KPH, JGU), V. Fimushkin and R. Kusaykin (JINR, Dubna)

Hydro-Møller polarimeter: Chicane design

Hydro-Møller polarimeter: Double-arm design

Geant4 simulation: model

Particle generators (original + <u>PRAD</u>*):

• Moller:

only $\overrightarrow{e^{-}} + \overrightarrow{e^{-}} \rightarrow e^{-} + e^{-} =>$ signal

• Elastic e⁻-p (Mott , e-p): only $\overrightarrow{e^{-}} + Z \rightarrow e^{-} =>$ background

*code of generators was kindly provided by PRAD collaboration (based on Eur. Phys. J. A 51(2015)1)

Geant4 model

Geant4 simulation: model

Simulation parameters:

- E_{beam} = 155 MeV
- Beam current = 150 μ A = 10¹⁵ e⁻/s
- B_{solenoid} = 8 T
- Moller generator:
 - $E_{electrons} \in [75, 80] \text{ MeV}$
- E-p generator:
 - $\theta_{\text{scat}} \in [0.01, 90] \text{ deg}$

Geant4 simulation: current results

11

Geant4 simulation: current results

PRISMA+ JGU

Summary

- Precise measurement of the weak mixing angle in the P2 experiment can test the SM or provide a sign of the new physics
- Need of online polarimetry → Hydro-Møller polarimeter
- Pioneering technology \rightarrow lot of technical and practical issues to be solved
- Further simulation and studies to choose the most optimal design for polarimeter and detecting system

Thank you for your attention! Questions/comments?

Special thanks to V. Tyukin (KPH, JGU) and R. Beminiwattha (Louisiana Tech University)!

Backup

The P2 experiment: overview and theory

Measuring the parity violating asymmetry in e-p-scattering

- (A_{pv})- expected value after averaging over the target length L and the detector acceptance
- A_{app} apparative asymmetry induced by helicity-correlated fluctuations of the electron beam properties

The P2 experiment

The idea

Precise measurement of the weak mixing angle $\sin^2\theta_w$ at low Q^2

Motivation

- $\sin^2\theta_W$ is a fundamental quantity of the SM and a parameter in the electroweak unification theory;
- accurate testing the SM or providing the new physics;

The P2 experiment: overview and theory

Scale dependence (running) of $\sin^2\theta_w(Q^2)$

P2 setup

- 60 cm LH_2 target
- Magnetic field along the beam axis
- Tracking detector will determine Q²
- Integrating Cherenkov detector will measure the asymmetry

P2 setup

Tracking detector:

- 2 planes with 4 modules/plane;
- Helium inside gas box;
- ~15° azimuthal coverage per module;
- measure average Q²;
- reconstruct individual electron tracks;

PRISMA+ JGU

Polarimetry chain @ MESA

22

- Polarimeter chain for cross checking
- Goal: $P_{Mott, Double} = P_{Mott, 5.0 MeV} = P_{Møller, H}$
- Online measurements => correction for changes in P_{beam}
- Overall accuracy: $\Delta P < 0.5\%$

Polarimetry chain @ MESA

MAMI and MESA photo cathodes

Polarimetry techniques

Issue: beam polarization could vary up to 10% during the run

need for an online polarimetry

Polarimetry techniques

Method	Physics	Pros	Cons
Mott	$\overrightarrow{e^-} + Z \rightarrow e^-$	Rapid, precise	Solid target => destructive
Compton	$\overrightarrow{e^{-}} + \overrightarrow{\gamma} \rightarrow e^{-}$	Non-destructive	Suitable only for high E _{beam}
Møller	$\overrightarrow{e^-} + \overrightarrow{e^-} \rightarrow e^- + e^-$	Rapid, precise	Solid target + concept for a low-density gaseous target

Atomic Hydrogen target (proposal by E. Chudakov and V. Luppov*):

- Non-destructive \rightarrow online measurement;
- Suitable for low-energies (E_{beam} = 155 MeV)
- Overall accuracy: $\Delta P \le 0.14\%$
- Pioneering technology \rightarrow technical challenges to solved
- *E. Chudakov, V. Luppov IEEE, V. 51, 2004; E. Chudakov, Nuovo Cim, V. C35, 2012

Hydro-Moller polarimeter: effect of the long target

Effect of solenoid magnetic field and long target

V. Tyukin, KPH

Detector system

$$A_m = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}} = P_T P_B \frac{\sin^2 \theta (7 + \cos^2 \theta)}{(3 + \cos^2(\theta))^2}$$

- σ is rate of scattered electrons,
- θ scattered angle.

Energy + time detector system:

- Detectors: GEM or HV-MAPS
- Calorimeter: PbF₂/LYSO crystals based
- Energy resolution: ~ 1% / $\sqrt{E(GeV)}$

Thank you for your attention!

Questions/comments?

Special thanks to V. Tyukin (KPH, JGU) and R. Beminiwattha, (Louisiana Tech University)!

Michail Kravchenko

PhD student, AG Berger PRISMA+ Cluster of Excellence/ Institute for Nuclear Physics, Johannes Gutenberg University Mainz

DPG Spring Meeting SMuK 2023, Dresden

Content

