

The Tracking Detector of the P2 Experiment at the MESA Accelerator

DPG Dortmund 2021 - T 64.2 Pixel Detectors III

Lars Steffen Weinstock, Dr.-Ing. Institute for Nuclear Physics, AG Berger Johannes-Gutenberg University Mainz

MOTIVATION

 Goal: Determination of protons weak charge Q_w(p) through parity violating asymmetry A^{PV} in electron-proton scattering at low momentum

$$A^{PV} = \frac{G_F Q^2}{4\pi \alpha_{em} \sqrt{2}} \left(Q_W(p) - \frac{F(E_i, Q^2)}{\text{suppressed at low } Q^2} \right)$$

- *Q_w(p)* suppressed in SM → sensitive for hypothetical new physics effects!
- With Q_w(p) ∝ 1 4·sin²θ_W → P2 gives electroweak mixing angle sin²θ_W at low energy scale
 - \Rightarrow Precision test for SM prediction of running $sin^2\theta_W(Q)$
 - \Rightarrow Hints to physics beyond SM?

EXPERIMENTAL SETUP

- Scattering experiment with longitudinally polarised electron beam and unpolarized liquid hydrogen target
 - \Rightarrow Measurement of Q^2 and N^+/N^-
- Asymmetry A^{PV} defined as difference in scattering cross section for left- and right-handed electrons

$$A^{PV} = \frac{d\sigma_{ep}^{+} - d\sigma_{ep}^{-}}{d\sigma_{ep}^{+} + d\sigma_{ep}^{-}} \propto \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

- Challenge: A^{PV} is very small (≈ 40 ppb)
 - ⇒ Huge amount of events required → high intensity beam + long measurement time
- With measurement time 10000 h expected precision of $\Delta s_w^2/s_w^2 = 0.14$ % and $\Delta Q_w(p)/Q_w(p) = 1.83$ %

[Dominik Becker et al., The P2 Experiment - A future high-precision measurement of the electroweak mixing angle at low momentum transfer, DOI: 10.1140/epja/i2018-12611-6]

MAINZ ENERGY-RECOVERING SUPERCONDUCTING ACCELERATOR (MESA)

- Construction in progress \rightarrow first beam time early 2024
- Provides beam with longitudinally polarized electrons
- Beam helicity flipped with $f_{sw} \sim 1 \text{ kHz}$
- Polarity monitored by three independent measurements
- Low energy (*E_{beam}* = 155 MeV) but high intensity (*I_{beam}* = 150 μA)
 - ⇒ Expected luminosity $\mathscr{L} = 2.38 \cdot 10^{39} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
 - ⇒ Expected event rate for P2 detector ~ $\mathcal{O}(0.1 \text{ THz})$

P2 SPECTROMETER

- Enclosed by solenoid ($B_z = 0.6 \text{ T}$ along beam axis)
- Electron beam enters scattering chamber and hits liquid hydrogen target (*lH*²)
- Tracking detector in helium atmosphere (gas box)
 - 8 modules arranged in two layers
 - Each module covers 15° (no full azimuthal coverage!)
 - 4 hits per track \rightarrow curve fit for Q^2
- Integrating Cherenkov ring detector $\rightarrow \sim N^+/N^-$
 - 82 wedged silica bars read out by PMTs

PRISMA⁺

JGU

P2 TRACKER MODULE

- Two layers of pixel sensors (540 sensors in total)
- Pixel sensors mounted on strip submodules
 - Kapton strips with Aluminium traces (flex print)
 - Supported by structure of folded Kapton foil (v-folds) → allows direct He cooling
- Cooled by Helium distribution system*
- Strip submodules mounted on frame PCBs with radiation hard readout electronics and power
 - \Rightarrow High radiation expected (*TID* ~ 60 Mrad)
- Support frame for rigidity and helium distribution

[*Michail Kravchenko, Design and cooling of the tracking detector of the P2 experiment, Pixel Detectors II T 39.6, DPG Talk]

- Compact system on chip
 - $80 \times 80 \ \mu m$ pixels with in-pixel amplifiers
 - Hits detected by on-chip tuneable comparators
 - Hit data sent out via 1.25 Gbit/s LVDS link (column & row address, time stamp, time over threshold)
 - Low material budged (50 μm thick)
- Based on muPix and AtlasPix design (KIT + Uni Heidelberg)
 - Detection efficiency > 99%
 - Time resolution $\Delta t = 15 \text{ ns} \otimes f_{noise} < 1 \text{ Hz}$
 - Power dissipation ~ $200 300 \text{ mW/cm}^2 \rightarrow \text{cooling!}$

TRACKER READOUT & CLOCK DISTRIBUTION

- Data readout and clock distribution using CERNs Versatile Link+
 - Low-power Gigabit Transceiver (IpGBT) Ser/Des ASIC
 - ⇒ 7 28 readout channels @ 320 1280 MBit/s
 - \Rightarrow Clock recovery from down link data stream
 - Versatile Transceiver Plus (VTRx+) optical readout module
 - ⇒ 1 RX + 4 TX fibres @ 2.56 10.28 Gbit/s
 - Radiation hard ($TID \approx 100$ Mrad)
 - Low power consumption
- Back-end with commercial off-the-shelf components
 - SAMTEC FireFly[™] optical transceivers
 - FPGA running custom firmware (GBT-FPGA)

SUMMARY AND OUTLOOK

- P2 aims for unmatched precision of $\Delta Q_w(p)/Q_w(p) = 1.83\%$ and $\Delta s_w^2/s_w^2 = 0.14\%$ at low momentum
 - \Rightarrow SM precision test
 - ⇒ Search for physics beyond SM
- New HV-MAPS chips under development for tracker
- State of the art radiation hard readout using CERNs lpGBT ASICs & VTRx+ modules
- First beam time planned for early 2024!

