Design and cooling of the tracking detector for the P2 experiment

DPG Spring Meeting 2021, Dortmund

Michail Kravchenko

PhD student, AG Berger PRISMA+ Cluster of Excellence/ Institute for Nuclear Physics, Johannes Gutenberg University Mainz

Content

- The P2 experiment: overview and theory
- Measuring the parity violating asymmetry in e-p-scattering
- P2 setup
- Tracking detector module
- Computational fluid dynamics (CFD) simulation
- Summary

The P2 experiment: overview and theory

Design and cooling of the tracking detector for the P2 experiment, Kravchenko Michail @ DPG Spring meeting, 15-19 March 2021

JG|U

Measuring the parity violating asymmetry in e⁻p-scattering

Measuring the parity violating asymmetry in *e⁻p*-scattering

Measuring the parity violating asymmetry in *e⁻p*-scattering

JGU

Beam:

- Current: 150 µA = 10¹⁵ e⁻/s
- $L \approx 2.4 \cdot 10^{39} \text{ cm}^{-2} \text{s}^{-1}$
- Energy: 155 MeV
- Highly polarized (≥85%)
- Flip helicity @ 1 kHz
- Extremely stable
- High runtime (>4k h/year)

 $\frac{\Delta \sin^2 \theta_{W}}{\sin^2 \theta_{W}} \sim 0.14\%$ MAGIX
MAGIX

First beam run is planned for 2024

Mainz Energy-Recovery Superconducting Accelerator (MESA)

- 60 cm LH₂ target
- Magnetic field along the beam axis
- Tracking detector will determine Q²
- Integrating Cherenkov detector will measure the asymmetry

Tracking detector:

- 2 planes with 4 modules/plane;
- Helium inside gas box;
- $\sim 15^{\circ}$ azimuthal coverage per module;
- measure average Q²;
- reconstruct individual electron tracks;
- 4 hits per track.

Tracking detector module

Tracking detector module

Tracking detector module

Design and cooling of the tracking detector for the P2 experiment, Kravchenko Michail @ DPG Spring meeting, 15-19 March 2021

Tracking detector module: Silicon pixel chips

- High voltage Monolithic Active Pixel Sensors (HV-MAPS)
- 20 x 23 mm² sensors with 80 x 80 μm^2 pixels
- 50 µm thickness
- Detection efficiency > 99%
- Streaming digital readout of up to 7.8 Mhits/s/cm²
- Power consumption: 0.96 1.7 W/chip

Schematic drawing of an HV-MAPS

Tracking detector module: cooling

JG

Tracking detector module: prototype

Initially developed by M. Zimmermann

CFD simulation

Computational fluid dynamics (CFD)

- Full equation for fluid dynamics:
 - Navier Stokes equations:

$$\rho \frac{D\vec{q}}{Dt} = -\nabla p + \mu \nabla^2 \vec{q} + \frac{1}{3}\mu \nabla (\nabla \vec{q}) + \rho \vec{g}$$

- Extremely complicated mathematics without general analytical solution
- Allows predict how liquids and gases will perform, heat transfer is also possible
- Minimization of the need for physical prototypes
 => saving in time & budget
- <u>Possible cons</u>: over- or underestimating of some physical parameters (e.g. temperature, pressure)

CFD simulation: model

- → Simplified model in order to save computational time:
 - Only the most necessary parts (no unused holes, corners, etc.)
- → Gas volume as a common 3D-body + essential heat generating and thermal conducting parts (HVMAPS and flexprint with v-folds in this case)

Design and cooling of the tracking detector for the P2 experiment, Kravchenko Michail @ DPG Spring meeting, 15-19 March 2021

[G]

CFD simulation: unequal heat dissipation

8 strips simplified model (4 top and 4 bottom)

periphery area could produce up to 50% of total heat

CFD simulation: current results

High power scenario:

- 300 mW/cm² unequal heat production by sensors;
- **0 °C** He
- 15 I\s channel flow
- **8.5 I**\s all others;

CFD simulation: Comparison of different scenarios

Gas diffuser

CFD simulation: current results

Summary

- Measurement of the weak mixing angle in the P2 experiment can precisely test the SM or provide a sign of the new physics;
- Detector development with silicon sensors => efficient cooling system;
- CFD simulation is an powerful tool for fluid cooling simulations.

G

Thank you for your attention!

Questions/comments?

DPG Spring Meeting 2021, Dortmund

Michail Kravchenko

PRISMA+ Cluster of Excellence/ Institute for Nuclear Physics, University of Mainz

Stay healthy and keep on doing physics!

DPG Spring Meeting 2021, Dortmund

Michail Kravchenko

PRISMA+ Cluster of Excellence/ Institute for Nuclear Physics, University of Mainz

The P2 experiment

The idea

Precise measurement of the weak mixing angle $\sin^2\theta_W$ at low Q^2

Motivation

- sin²θ_w is a fundamental quantity of the SM and a parameter in the electroweak unification theory;
- accurate testing the SM or providing the new physics;

The P2 experiment: overview and theory

- Angle shows up both in masses and couplings (charges)
- The second options is used here (depends on energy):

$$\sin^2 \theta_W = \frac{g^{\prime 2}}{g^2 + g^{\prime 2}}$$

"MS-scheme"

• Absorb radiative corrections into effective, scale-dependent ("running") $\sin^2\theta_{W}(Q^2)$

GIL

PVeS experiment summary

MC particle rates on 1st tracker plane

Photon Background:

- Continuous bremsstrahlung energy distribution
- Secondary electrons mainly produced by photo-effect
- Low detection rate of higher energetic photons

Particle rates on different planes

Design and cooling of the tracking detector for the P2 experiment, Kravchenko Michail @ DPG Spring meeting, 15-19 March 2021

Projection of expected electron trajectories

P2 error budget

E_{beam}	$155\mathrm{MeV}$	$\langle s_{\rm W}^2 \rangle$	0.23116
$ar{ heta}_{\mathbf{f}}$	35°	$(\Delta s_{ m W}^2)_{ m Total}$	$3.3 \times 10^{-4} \ (0.14 \%)$
$\delta heta_{ m f}$	20°	$(\Delta s_{ m W}^2)_{ m Statistics}$	$2.7 \times 10^{-4} \ (0.12 \%)$
$\langle Q^2 \rangle_{L=600 \mathrm{mm}, \ \delta \theta_{\mathrm{f}}=20^{\circ}}$	$6 \times 10^{-3} (\mathrm{GeV/c})^2$	$(\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}}$	$1.0 \times 10^{-4} \ (0.04 \%)$
$\langle A^{\exp} \rangle$	$-39.94\mathrm{ppb}$	$(\Delta s_{\mathrm{W}}^2)_{\mathrm{Apparative}}$	$0.5 \times 10^{-4} \ (0.02 \%)$
$(\Delta A^{\exp})_{\mathrm{Total}}$	0.56 ppb (1.40 %)	$(\Delta s_{\mathbf{W}}^2)_{\Box_{\gamma Z}}$	$0.4 \times 10^{-4} \ (0.02 \%)$
$(\Delta A^{\exp})_{\mathrm{Statistics}}$	0.51 ppb (1.28 %)	$(\Delta s_{\mathrm{W}}^2)_{\mathrm{nucl. FF}}$	$1.2 \times 10^{-4} \ (0.05 \ \%)$
$(\Delta A^{\exp})_{\text{Polarization}}$	0.21 ppb (0.53 %)	$\langle Q^2 \rangle_{\rm Cherenkov}$	$4.57 \times 10^{-3} ({\rm GeV/c})^2$
$(\Delta A^{\exp})_{\text{Apparative}}$	$0.10 \mathrm{ppb}(0.25\%)$	$\langle A^{\exp} \rangle_{\rm Cherenkov}$	-28.77 ppb

Figure 5.12.: Total ionizing dose on the first and third tracker plane, evaluated with the detector simulation and normalized to 1×10^4 h run time at full beam current.

TID varies between 10 Mrad to 60 Mrad @ different planes

Tracking detector module: coolant

- Low material budget in the detector area
- Prevent secondary scattering on coolant shells

gaseous

He

@ T = 300 K and p = 101 325 Pa

Hydrogen gas forms explosive mixtures with air in concentrations from 4–74%

Strip submodule

(a) Front side of the strip submodule

(b) Back side of the strip submodule

tension

Tracking detector module: dimensions

Random orientation of velocity vectors at the outlet of the diffuser part

Uneven flow front with backflows

MuPix: telescope during the testbeam

Design and cooling of the tracking detector for the P2 experiment, Kravchenko Michail @ DPG Spring meeting, 15-19 March 2021

MuPix specs

	MuPix8	MuPix10	ATLASPix1_Simple	ATLASPix3
Process	AH18 (AMS) [3]	H18 (TSI) [4]	AH18 (AMS) [3]	H18 (TSI) [4]
Sensor size [mm ²]	10.7×19.5	20.2×23.0	3.4×18.4	20.2×21.0
Pixel matrix	128×200	250×256	25×400	132×372
Pixel size $[\mu m^2]$	81×80	80×80	130×40	150×50
Active area [mm ²]	10.3×16.0	20.1×20.0	3.25×16.0	19.8×18.6
#Bits timestamp & ToT	10+6	11+5	10+6	10+7
Pixel tune DACs [bits]	3	3	3	3
Bandwidth [Gbit/s]	$\leq 1.6 (3 \times)$	≤ 1.6 (3×)	≤ 1.6	1.28
Readout architecture	continuous	continuous	continuous	trigger (cont.)
Status (December 2019)	tested	in production	tested	under test

MuPix: readout schematics

CFD simulation: Comparison of different scenarios

JG	U
----	---

Total heat production	Volumetric analogue (used in CFD for dissipation in all directions), W/cm ³		
of one MuPix, mW/cm ²	Total*	Active area (87%)	Periphery area (13 %)
400	80	40	346
350	70	35	304
300	60	30	260
250	50	25	217
200	40	20	174

*periphery area will (can) produce up to 50% of the total heat

CFD simulation: Comparison of different scenarios

(`channel flow`, 3x`inner&outer flows` [l/s])

CFD simulation: pressure drop & mass flow

High power scenario (300 mW/cm²):

	Channel flow Inner and outer flows (per flow)	
Mass flow, g/s	~ 2.6	~ 1.5
Total mass flow, g/s	~ 7	
Pressure drop, mbar*	<30	<60
Max velocity, m/s	~22 (locally)	≈2

* Pressure at the inlet, outlet pressure is 0 Pa

Helium cooling system

Mu3e helium cooling - miniature turbo compressor option

Mu₃e mbar q/s 40 2.0 GL12 25 6.9 GL3S mbar g/s 28 5.7 GL3T-1 ---GL12 -40 2.0 28 5.7 GL3T-2 -- VL3-1 -90 1.3 -90 25 7.6 GL34-1-VL3-2 1.3 7.6 GL34-2-➤ VL3-3 -90 1.3 25 25 7.6 GL34-3-→ VL4-1 -80 1.5 90 1.3 VL3-1 --80 1.5 ➤ VL4-2 90 1.3 VL3-2 → VL4-3 -80 1.5 Turbocompressors 90 1.3 VL3-3 GLF ~0 45 80 1.5 VL4-1 -80 1.5 VL4-2 · 80 1.5 VL4-3 ~0 4.0 GLF-Turbocompressors Cryo trap LN2 ~70 K m -001-Expansion tank 3 Not shown: Vibration Vibration - Control valves per circuit Heat exchanger damper Roots pump damper - Sensors (p, T, F) - Gas analysis sensor -007-Bypass

Figure 2: PFD of helium cooling plant in a version with a number of small compressors (see text).

JG

25.9.19, F. Meier

Simplified conceptual sketch

