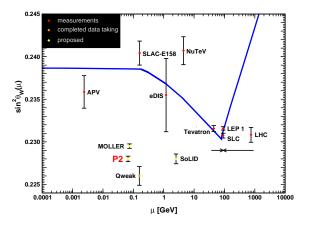
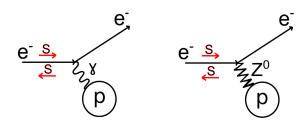
Momentum transfer reconstruction for the P2 Experiment

Alexey Tyukin

Mainz Institute for Nuclear Physics DPG Tagung 2019 Aachen

27.03.2019

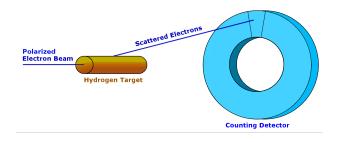



Motivation for measuring θ_W at low Q^2

- The Weak Mixing angle is a fundamental parameter of theory of electroweak unification
- $\sin^2(\theta_W) = g_e^2/g_w^2 \approx 0.2314$ with $\theta_W \approx 28.75^\circ$
- Running of $\sin^2(\theta_W)$ due to radiative corrections
- Measure precise $\sin^2(\theta_W)$ at $\mu < 1 \text{GeV} \Rightarrow \text{SM}$ test or BSM physics

• P2 Experiment : Parity violating e scattering

Parity violating electron scattering


- Scattering of longitudinally polarized electrons on a proton target.
- EM-cross section dominates: $\sigma_{\gamma} \gg \sigma_{Z}$.
- Z^0 cross section depends on helicity of electron: $\sigma_Z^R \neq \sigma_Z^L$.
- Parity-violating asymmetry:

$$A^{PV} = \frac{\sigma^L - \sigma^R}{\sigma^L + \sigma^R} = \frac{G_f Q^2}{4\pi\alpha\sqrt{2}} \cdot \left(\underbrace{1 - 4\sin^2\theta_W}_{Q_W(p)} + F(Q^2)\right)$$

2

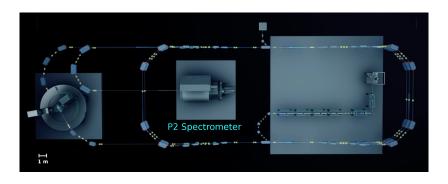
Kinematics

Choice of energy and scattering angle to minimize $\Delta \sin^2(\theta_W)$:

Beam : $E_{\text{beam}} = 155 \, \text{MeV}$, $I_{\text{beam}} = 150 \, \mu \text{A} = 10^{15} \, e^-/s$,

Target : 60 cm liquid hydrogen , $L=2.4\cdot 10^{39} {\rm s^{-1} cm^{-2}}$

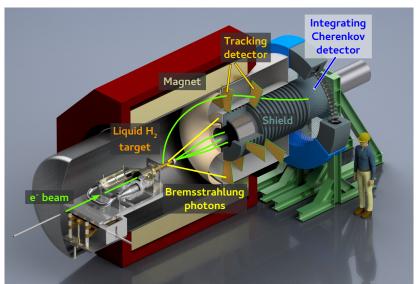
 Q^2 : $4.5 \times 10^{-3} \text{ GeV}^2$

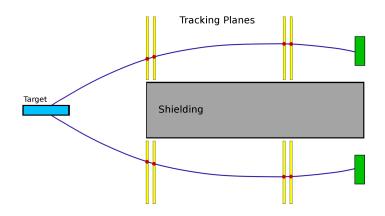

Experiment : 10^{11} scattered electrons / sec for 11000 h

Asymmetry : $A_{PV}=40\,\mathrm{ppb}$, $\Delta A_{PV}=0.57\,\mathrm{ppb}=1.4\%$

Weak mixing angle : $\Delta \sin^2(\theta_W) = 0.15\%$

MESA - Mainz Energy-Recovering Superconducting Accelerator

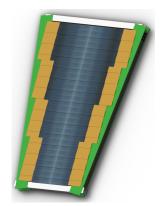

A new accelerator is being built in Mainz which will allow a next generation parity violation experiment


- High Intersity, 85% polarisation with 1 kHz helicity switching
- High stability of position, energy and intensity to minimize error of A^{PV}

P2 Spectrometer

• Magnetic field of solenoid bends electrons around a lead shield which protects the counting detector from background:

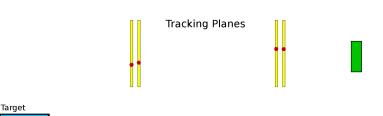
Tracking Planes



- Four tracking planes inside the magnetic field
- Tracking planes partially not shielded from photons
- No full azimuthal coverage necessary, very high electron rates

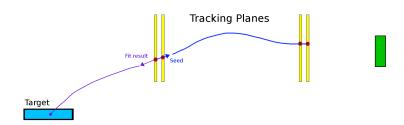
Tracking Planes

- MuPix chips (HV-MAPS, designed for Mu3e Experiment)
- Pixel size 80 x 80 μ m, chip size 2x2 cm²
- \bullet Only 50 $\mu\mathrm{m}$ thickness, fast response



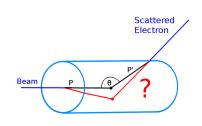
- 8 modules covering large area (15° each)
- Double layers of >300 MuPix chips
- Operation in high background environment
- Cooling (gaseous helium) required

Track reconstruction


- Track finding: which 4 hits were created by the same track?
 many electrons + background photons ⇒ combinatorics problem
- Track fitting: reconstruct track from 4 hits, one on each detection plane
- Inhomogeneous magnetic field and helium gas between planes
- Energy loss and scattering in planes

8

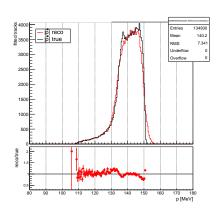
Track reconstruction - fitting

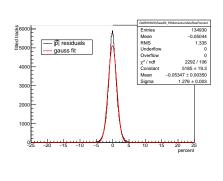

- Approximate seed momentum on the first plane
- Propagate seed momentum (Runge-Kutta-Nystroem)
- Calculate Jacobian matrix for the propagation (Bugge-Myrheim)
- \bullet Fit by minimizing the χ^2 (General Broken Lines , GBL)

Momentum transfer Q^2 reconstruction

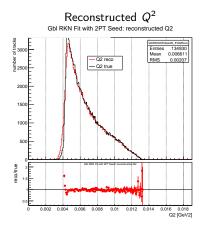
Simple method for example: Momentum transfer requires the kinematics of the event

$$Q^2 = 4 \cdot P \cdot P' \cdot \sin^2(\theta/2)$$

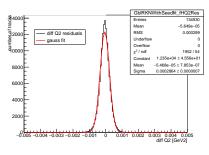

- Need to estimate P,P', θ
- Propagate fit result back to the target
- Estimate vertex as point of closest approach to target center
- Energy loss in target before and after scattering


Track reconstruction performance

Reconstruction of momentum magnitude from Geant4 simulation:

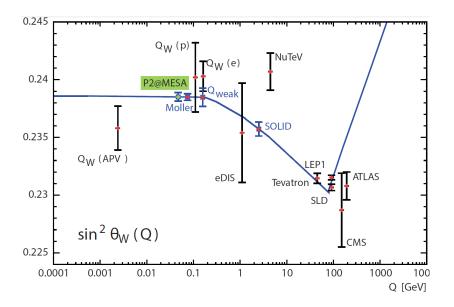

$$P_{reco}$$
 and P_{true} :

$$\frac{P_{reco} - P_{true}}{P_{true}}$$
:

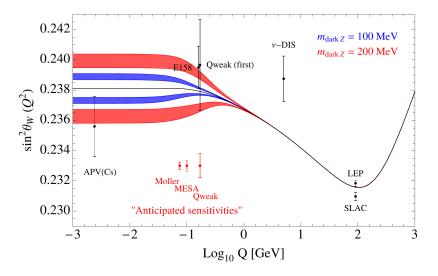


Momentum transfer Q^2 reconstruction performance

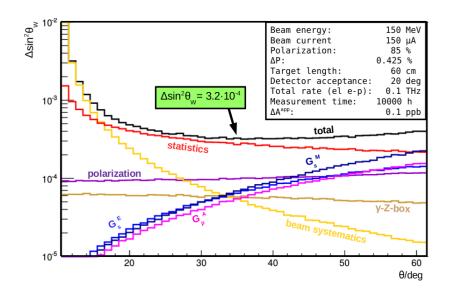
Reconstructed Q^2 Residual

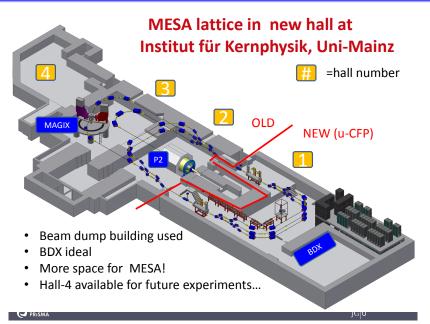

- Get reconstruction quality by comparing with Monte-Carlo simulation value
- \bullet Residual width of 0.00028 \mbox{GeV}^2/c^2 is an average resolution of 4.2%.
- \bullet True diffculty is in reconstructing Q^2 without bias on average.

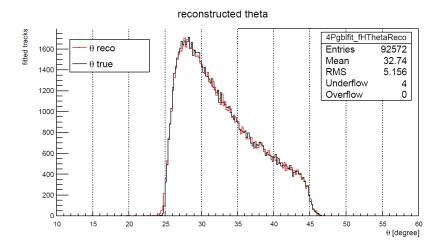
Summary


- The P2 Experiment is planning a measurement of $\sin^2(\theta_W)$ with 0.13% precision
- A new accelerator will be built to make it possible
- ullet The P2 Spectrometer will measure A_{PV} of 100 GHz elastically scattered electrons on liquid hydrogen
- Silicon pixel tracking planes will measure average Q²

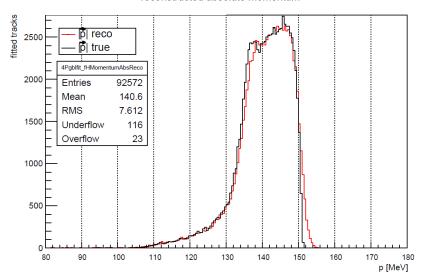
Backup: Future measurements




Backup:dark Z


arXiv:1402.3620v2, 21. Feb 2014

Backup: $\Delta \sin^2(\theta_W)$ optimiziation



Backup: Angle reconstruction

Backup: Momentum reconstruction

reconstructed absolute momentum

