Building a Tracking Detector for the P2 Experiment

DPG Frühjahrstagung, Würzburg 2018

Marco Zimmermann Institute for Nuclear Physics March 20, 2018

Precision Physics, Fundamental Interactions and Structure of Matter JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JG U The P2 Experiment: Overview

The Idea

Precision measurement of the weak mixing angle at low Q^2

Motivation

- Fundamental quantity of the Standard Model
- Sensitive for New Physics

Method

- Measure parity-violating asymmetry in electron-proton scattering
- Mainz Energy-recovery Superconducting Accelerator (MESA)

1	P2 Experiment		
JG U	The P2 Experiment:	Overview	

The Idea

Precision measurement of the weak mixing angle at low Q^2

Motivation

- Fundamental quantity of the Standard Model
- Sensitive for New Physics

Method

- Measure parity-violating asymmetry in electron-proton scattering
- Mainz Energy-recovery Superconducting Accelerator (MESA)

I.	P2 Experiment		
JG U	The P2 Experiment:	Overview	

The Idea

Precision measurement of the weak mixing angle at low Q^2

Motivation

- Fundamental quantity of the Standard Model
- Sensitive for New Physics

Method

- Measure parity-violating asymmetry in electron-proton scattering
- Mainz Energy-recovery Superconducting Accelerator (MESA)

Definition

 $\tan \theta_W = \frac{g}{g'}$ with $SU(2)_L \times U(1)_Y$ gauge couplings g, g'

Absorb radiative corrections into effective, scale-dependent ("running") $\sin^2 \theta_W(Q^2)$

0.1

μ [GeV]

10

100

1000

0.01

0.001

հահահահահահա

10000

Running $\sin^2 \theta_W$ Measurements

Need very high statistics and precise control of systematics

- 150 μA beam current, 10 000 h measuring time
- 60 cm liquid hydrogen target for high luminosity
- MESA beam
 - *E* = 155 MeV
 - Highly polarized ($\geq 85\%$), flip helicity at 1 kHz
 - Low helicity-correlated uncertainties

Need very high statistics and precise control of systematics

- 150 μA beam current, 10 000 h measuring time
- 60 cm liquid hydrogen target for high luminosity
- MESA beam
 - $\bullet E = 155 \,\mathrm{MeV}$
 - Highly polarized (≥ 85 %), flip helicity at 1 kHz
 - Low helicity-correlated uncertainties

Need very high statistics and precise control of systematics

- 150 μA beam current, 10 000 h measuring time
- 60 cm liquid hydrogen target for high luminosity
- MESA beam

 - Highly polarized (≥ 85%), flip helicity at 1 kHz $\frac{\Delta \sin^2 \theta_W}{\sin^2 \theta_W} \sim 0.14\%$ Low helicity-correlated uncertaint

P2 Experiment

P2 Detector Layout

Tracking Detector

Beamline

- 2×4 modules of plane pairs
- $\label{eq:started} \bullet ~ 15^\circ \text{ azimuthal coverage per tracking detector module}$
- Measure average Q²
- Reconstruct individual electron tracks

Cherenkov

Lead Shield

Steel support

ring detector

1		Tracking Detector	
JG	Silicon Pixel Chips		

- High Voltage Monolithic Active Pixel Sensors
- Silicon thinned to 50 μm
- Size about 2x2cm per chip
- \blacksquare Power dissipation about 1W/Chip

- High Voltage Monolithic Active Pixel Sensors
- Silicon thinned to 50 μm
- Size about 2x2cm per chip
- Power dissipation about 1W/Chip

14 Chips

- Kapton Strip with two V-folds for mechanical stability and for cooling
- Kapton Flexprint with aluminum traces
- Pixel Chips glued and bonded to flexprint
- Hard PCB at both ends
- Milled plastic block to distribute gaseous helium needed for cooling

1		Tracking Detector ○●○○○	
JG	Strip Assembly		

- Kapton Strip with two V-folds for mechanical stability and for cooling
- Kapton Flexprint with aluminum traces
- Pixel Chips glued and bonded to flexprint
- Hard PCB at both ends
- Milled plastic block to distribute gaseous helium needed for cooling

1		Tracking Detector	
JG	Strip Assembly		

- Kapton Strip with two V-folds for mechanical stability and for cooling
- Kapton Flexprint with aluminum traces
- Pixel Chips glued and bonded to flexprint
- Hard PCB at both ends
- Milled plastic block to distribute gaseous helium needed for cooling

1		Tracking Detector	
JGU	Strip Assembly		

- Kapton Strip with two V-folds for mechanical stability and for cooling
- Kapton Flexprint with aluminum traces
- Pixel Chips glued and bonded to flexprint
- Hard PCB at both ends
- Milled plastic block to distribute gaseous helium needed for cooling

- Electronics for Powering and Readout
- Strips mounted via Samtec Interposer

65cm

Samtec Interposer

			Tracking Detector	
			00000	
JG	U _{Tra}	cking Detector N	lodule	

1				Tracking Detector	
JG	U _{Trac}	king Detector	Module		

- Electronics for Powering and Readout
- Strips mounted via Samtec Interposer

632 Chips per module

		Tracking Detector	
JGU	Tracking Detector Module		

Outer frame for additional helium flow outside

 Closed with foil to guide helium flow

			Tracking Detector	
JG	U Tra	acking Detector Ma	odule	

- Outer frame for additional helium flow outside
- Closed with foil to guide helium flow

P2 Experiment	Tracking Detector	
JG U Strip Connection		
Requirements		0.1.1
 Reliable connection 	Samtec® ZA	8 Interposer
 Fast signal transmission 	board-to-	-board
Power transmission	interconr	nect
 Alignment 	 Imm her 0.8mm p 	ght itch

 Compression contacts on top, solder balls on bottom

• (Easily) exchangeable

1		Tracking Detector	
JG U	Strip Connection		
D			

Requirements

- Reliable connection
- Fast signal transmission
- Power transmission
- Alignment
- (Easily) exchangeable

Samtec® ZA8 Interposer

- high density, low profile board-to-board interconnect
- 1mm height
- 0.8mm pitch
- Compression contacts on top, solder balls on bottom

1		Tracking Detector	
JG U	Strip Connection		

Requirements

- Reliable connection
- Fast signal transmission
- Power transmission
- Alignment
- (Easily) exchangeable

Testboard

- Samtec® ZA8 Interposer
 - high density, low profile board-to-board interconnect
 - 1mm height
 - 0.8mm pitch
 - Compression contacts on top, solder balls on bottom

			Tracking Detector	
		0000000	00000	
١				
Г	U	Carling		
		Cooling		

- Gaseous Helium cooling
- Tracker placed in helium atmosphere
- Helium flow
 - through V-folds
 - between planes
 - over the planes
- Expected heat production
 ~ 1 W per chip (632 Chips)
- Maximum operating temperature $\leq 70 \,^{\circ}\mathrm{C}$

1.6W/chip, 42l/s helium flow

JG U Summary and Conclusions

P2 Experiment

- Measure sin² θ_W at low Q² in parity violating ep-scattering
- A_{PV} measurement with integrating Cherenkov detectors
- Tracking Detector
 - Q² Measurement and systematic studies
 - Low material budget
 - Very high (background) particle rates
 - Detailed track finding and reconstruction studies ongoing
 - Development of mechanical layout started

Conclusions

Thank you for your attention.

Backup

- Very high particle rates at full beam intensity
 - O(10¹⁵) beam electrons per second
 - Large amount of background, mostly bremsstrahlung photons

MC Particle Rates on 1st Tracker Plane

Test the Detector Response to Photons

Photon Background

IGU

- Continuous bremsstrahlung energy spectrum
- Photoelectric Effect
- Compton Scattering
- Pair Creation

- Radioactive Sources
 First result: η ~ 29%@6 keV (Fe55)
- MAMI beamtest for higher photon energies

Test the Detector Response to Photons

Photon Background

- Continuous bremsstrahlung energy spectrum
- Photoelectric Effect
- Compton Scattering
- Pair Creation

- $\label{eq:adjoactive Sources} \mbox{First result: } \eta \sim 29\% @\,6\,keV \mbox{(Fe55)}$
- MAMI beamtest for higher photon energies

P2 Experiment 0000000 Tracking Detecto

Conclusions

Test the Detector Response to Photons

Photon Background

- Continuous bremsstrahlung energy spectrum
- Photoelectric Effect
- Compton Scattering
- Pair Creation
- Radioactive Sources First result: $\eta \sim 29\%@6 \text{ keV}$ (Fe55)
- MAMI beamtest for higher photon energies

2 Experiment

Tracking Detect

Conclusions

G U ZA8 Interposer

Ratings

3.0 TESTING

- 3.1 Current Rating: 0.9A (Ten Pins Powered 1x10)
- 3.2 Voltage Rating: 110 VAC
- 3.3 Operating Temperature Range: -55°C to +105°C
- 3.4 Operating Humidity Range: Up to 95% (Per EIA-364-31)
- 3.5 Electrical:

ITEM	TEST CONDITION	REQUIREMENT	STATUS
Withstanding Voltage EIA-364-20 (No Flashover, Sparkover, or Breakdown)		335 VAC	Pass
Insulation Resistance	EIA-364-21 (1000 MΩ minimum)	45,000 ΜΩ	Pass
Contact Resistance (LLCR)	EIA-364-23	Δ 15 mΩ maximum (Samtec defined)/ No damage	Pass

3.6 Mechanical:

ITEM	TEST CONDITION	REQUIREMENT	STATUS
Durability	EIA-364-09C	25 cycles	Pass

4.0 HIGH SPEED PERFORMANCE

4.1 Based on a 3 dB insertion loss

Stack Height	Single-Ended Signaling	Differential Pair Signaling
1mm	10.2 GHz / 20.4 Gbps	20 GHz / 40 Gbps

4.2 System Impedance: 50 ohm for single-ended and 100 ohm for differential pair

http://suddendocs.samtec.com/productspecs/za8.pdf

Tested Device

- 10x10 pins
- 0.8 mm pitch
- 1mm thickness
- Single
 Compression

JGU Test Board

- HSMC Connector
- 7 differential pairs
 - 4 pairs $HSMC \rightarrow interposer \rightarrow$ Top board loop \rightarrow $interposer \rightarrow HSMC$
 - 1 pair HSMC \rightarrow SMA out
 - 2 pairs HSMC \rightarrow interposer \rightarrow Top board loop \rightarrow interposer \rightarrow SMA out
- 20 LED's on top board to quickly test 40 connections
- Power plane on both boards for current rating tests

Conclusions

JGU Pinout

2 Experimen

Tracking Detecto

Conclusions

	А	В	С	D	E	F	G	н	J	к
1	61	DP1_in	GND	DP1_out	VCC	VCC	VCC	DP4_out	VDD4	G4
2	GND	DP1.in	GND	DP1_out	VDD1	VCC	VCC	DP4_out	VDD5	65
3	GND	GND	62	VDD14	DP6_in	VDD2	VDD3	VDD6	VCC	VCC
4	GND	OP2_in	63	VDD15	DP6_in	VD017	VDD7	VCC	VCC.	VCC
5	G15	DP2_in	614	DP3_in	VDD16	DP6_out_ sma	VDD8	DP4_in	66	67
6	VCC	VCC	G16	DP3_in	DP3_out	DP6_out_ sma	VDD9	DP4_in	G 9	G8
7	VCC	DP2_out	G17	VDD18	DP3_out	VOD20	VDD12	VDD10	VCC	VEC
8	VCC	DP2_out	GND	VDD19	G20	VDD13	G13	GND	VCC	VCC
9	Gia	GND	GND	DP5_out_ sma	GND	DP5_in	GND	GND	V0011	610
10	G19	GND	GND	DP5_out_ sma	GND	DP5_in	GND	GND	G12	611
11 12 13 14 15 16				VCC = +1. VDD* = +3 GND = Gro G*= Grou DP = differ	8V, linked, 8.3V, individ ound, linke nd, individu rential pair	max. 8A dually conne d Jally connec	ected ted			

- 2 top boards with LED's mounted
- 3 bottom boards with HSMC connector assembled
- Several plugging and un-plugging cycles with different board combinations
- No broken connection found yet

2.5 Gbit/s

BER test

IGU

- Test with all 4 pairs which are routed to the HMSC connector on both ends
- No error found in $1.25 \cdot 10^{15}$ transmitted bits per channel

Show in table:	Current	MinMax	Best	
Link Alias 🔺	Status	Bits tested	BER	Test pattern
0_address_0	Romming	1.2554E15	0	PRBS31
0_address_1	Running	1.2555E15	0	PRBS31
0_address_2	Running	1.2554E15	0	PRBS31
0_address_3	Running	1.2554E15	0	PRBS31

P2 Experim

Tracking Detecto

Conclusions

Eye diagram

Top: Differential Pair 5 Bottom: Differential Pair 1 directly from FPGA

- 1.25 Gbps
- Eye diagram for signal after interposer sufficiently wide opened
- Time difference of 1.35 ns does not fit to trace length difference of 18 cm!

P2 Experimen

Tracking Detecto

Conclusions

GU Eye diagram

Top: Differential Pair 5 Bottom: Differential Pair 1 directly from FPGA

- 1.25 Gbps
- Eye diagram for signal after interposer sufficiently wide opened
- Time difference of 1.35 ns does not fit to trace length difference of 18 cm!

P2 Experiment

Tracking Detecto

Conclusions

GU Eye diagram

Top: Differential Pair 6 Bottom: Differential Pair 5

- Why are there non-transitioning lines?
- Both Eye diagrams sufficiently wide opened
- Time difference of 0.04 ns does not fit to trace length difference of 2.8 cm!

JGU Eye Diagram Statistics

	Direct Transmission	Interposer
Width [ps] - mean - std. dev. - max - min	725.05 4.98 740.20 685.61	700.88 5.34 717.28 660.52
Height (transitioning) [ps] -mean -std. dev -max -min	179.72 0.51 181.46 177.01	145.34 1.06 148.95 139.35
Height (non-transitioning) [ps] -mean -std. dev -max -min	202.82 0.56 204.86 199.51	185.84 0.96 189.06 180.39
Rise Time (10% \rightarrow 90%) [ps] -mean -std. dev -max -min	201.38 7.38 309.44 175.47	298.40 42.87 524.25 208.31
$\begin{array}{l} \mbox{Fall Time (90\% \rightarrow 10\%) [ps]} \\ -mean \\ -std. \ dev. \\ -max \\ -min \end{array}$	207.09 8.97 297.30 179.21	295.55 35.50 531.83 208.79

Differential Pair 5

Differential Pair 6

2 Experiment

IG U

Tracking Detecto

Conclusions

- CMOS temperature sensor glued on top and bottom board opposite to interposer
- 2 channels of HMP4040
- Readout and Load control via LabJack
- 1.8 V Supply voltage

JGU Voltage Drop

JG	U	Temperature

M.Zimmermann (Institute for Nuclear Physics) | Tracking Detector for P2 | March 20, 2018

1			
JG	Beam Stability Require	ments	

	<u><u> </u></u>				
Kanm	Sta	hility	Real	urama	ante
Dean	JLa		I VEU		

	Achieved at MAMI	$A_{\rm PV}$ uncertainty	requirement
Energy fluctuation	0.04 eV	< 0.1 ppb	ok!
Position fluctuation	3 n m	5ppb	0.13 nm
Angle fluctuation	0.5 nrad	3 ppb	0.06 nrad
Intensity fluctuation	14 ppb	4 ppb	0.36 ppb

	U		
JG		Systematic	Uncertainti

JGU Experiment Tracking Detector 0000000 000000 Fxpected Particle Rates on First Plane

Hit Distribution in Tracking plane 0, z = 1080

JGU Expected Particle Rates on Second Plane

Hit Distribution in Tracking plane 1, z = 1100

JGU Experiment Tracking Detector

 10^{-2} Events/(s*mm²) Events/(pixel*50ns) Signal Electrons hitting ICD 10 Other hard scattered electrons Secondary electrons 10^{-3} Beam electrons (no hard scattering) Photons 10 Positrons Protons Neutrons 10^{-4} 105 10^{-5} 10^{4} 10^{-6} 10^{3} 10^{-7} 10^{2} 10^{-8} 10 $^{10^{3}}$ 1

0.9

^{1.1} R_{cyl}/mm

Hit Distribution in Tracking plane 2, z = 1640

0.8

0.7

0.6

JGU Experiment Tracking Detector Concl

Hit Distribution in Tracking plane 3, z = 1660

First Tracker Plane

Photon Background

- Continuous bremsstrahlung energy distribution
- Secondary electrons mainly produced by photo-effect
- Low detection rate of higher energetic photons
- Reduced rate of secondary electrons on "covered" plane
- Detailed investigation of detector response to low energy photons needed

M.Zimmermann (Institute for Nuclear Physics) | Tracking Detector for P2 | March 20, 2018

Second Tracker Plane

Photon Background

- Continuous bremsstrahlung energy distribution
- Secondary electrons mainly produced by photo-effect
- Low detection rate of higher energetic photons
- Reduced rate of secondary electrons on "covered" plane
- Detailed investigation of detector response to low energy photons needed

Events/(pixel*50ns)

kinetic Energy / MeV

P2 Experiment

Tracking Detect

Photon Production Processes

P2 Experimen

Tracking Detecto

Conclusions

JG U Photon Vertices

P2 Experiment

IGU

Tracking Detect

Conclusions

Secondary Electrons Production Processes

Production Vertices

