

Iurii Sorokin PRISMA Cluster of Excellence / Institute for Nuclear Physics, University of Mainz

DPG-Frühjahrstagung 2018, Würzburg

Tracking = track finding + track fitting

P2 setup

P2 setup

Reconstruction frame (45ns) at the full beam rate

WWW RE PARINE PARE

 \mathbf{n}'

 \mathbf{e}^{-}

7

y-z view

Track following with parameterized search windows

How to extrapolate?

Extrapolation with constraints

Compare with reference tracks

- from MC
- run at low beam rate; consider all combinations; select by χ^2 .

How to construct the parameterizations?

Search window for plane 2

Search window for plane 2

Collect large number of reference tracks

Search window for every R_3 bin:

Extract window position and size:

R_{3}	X _{POS}	$\mathbf{y}_{\mathrm{POS}}$	X _{SIZE}	$\mathbf{y}_{\mathrm{SIZE}}$	ϕ_{ROT}
value					
value					
value					

Fit

Fit

Search window for plane 1

R_{3}	$\Delta x'_{23}$	$\Delta y'_{23}$	$\mathbf{x}_{\mathrm{POS}}$	$\mathbf{y}_{\mathrm{POS}}$	X _{SIZE}	$\mathbf{y}_{\mathrm{SIZE}}$	ϕ_{ROT}
						•••	
						•••	
	•••	•••	••••	•••	•••	•••	

determine the search windows

$$\begin{split} \mathbf{x}_{\text{SIZE}} &= \mathbf{x}_{\text{SIZE}} (\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{y}_{\text{SIZE}} &= \mathbf{y}_{\text{SIZE}} (\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{x}_{\text{POS}} &= \mathbf{x}_{\text{POS}} (\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{y}_{\text{POS}} &= \mathbf{y}_{\text{POS}} (\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{\phi}_{\text{ROT}} &= \mathbf{\phi}_{\text{ROT}} (\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \end{split}$$

Search window for plane 0

Relative distance from the center of the search window

Overall about 90% efficiency (depending on settings). 37

Performance

Number of candidates per signal track

Summary

Parameterization-based tracking:

- replaces rigorous model calculations
 by simple analytical parametric functions
- parameters can be tuned based on real data or simulation
- enables accurate, efficient, and very fast track finding
- works well for P2 due to narrow momentum range