

Parameterization-based tracking for the P2 experiment

Iurii Sorokin PRISMA Cluster of Excellence / Institute for Nuclear Physics, University of Mainz

HK T 89.9 DPG-Frühjahrstagung 2017, Münster

Why is tracking necessary?

"Measure" actual Q² distribution

Why is tracking necessary?

Validate the acceptance, alignment, and magnetic filed map

The magnetic field is anyways necessary, even without tracking

Why is tracking necessary?

Montor the beam and the target conditions (e.g. boiling)

Continuously, at full rate, but with small duty cycle. On-line analysis

Reconstruction frame (45ns)

at 1% beam rate

without the background from the beam

 e^{-}

Parameterization-based track finding

Extrapolation

Extrapolation

Extrapolation with constraints

Using reference tracks

Reference tracks:

- from MC
- brute-force reconstruction at low rate; select by χ^2 .

How to construct the parameterizations?

Search window for plane 2

Search window for plane 2

e⁻ beam

Take large number of reference tracks

Search window for every R_3 bin:

Extract window position and size:

${ m R}^{}_3$	X _{POS}	$\mathbf{y}_{\mathrm{POS}}$	X _{SIZE}	$\mathbf{y}_{\mathrm{SIZE}}$	ϕ_{ROT}
value					
value					
value					

Fit

Fit

Search window for plane 2

e⁻ beam

Search window for plane 1

e⁻ beam

R_3	$\Delta x'_{23}$	$\Delta y'_{23}$	X _{POS}	$\mathbf{y}_{\mathrm{POS}}$	X _{SIZE}	$\mathbf{y}_{\mathrm{SIZE}}$	$\phi_{\rm ROT}$
			•••			•••	
••••				•••	•••		

determine the search windows

$$\begin{split} \mathbf{x}_{\text{SIZE}} &= \text{pol3}(\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{y}_{\text{SIZE}} &= \text{pol3}(\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{x}_{\text{POS}} &= \text{pol3}(\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \mathbf{y}_{\text{POS}} &= \text{pol3}(\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \\ \boldsymbol{\phi}_{\text{ROT}} &= \text{pol3}(\ \mathbf{R}_{3}, \Delta \mathbf{x'}_{23}, \Delta \mathbf{y'}_{23} \) \end{split}$$

Search window for plane O

Relative distance from the center of the search window

Relative distance from the center of the search window

Overall about 90% efficiency (depending on settings). 47

Performance

Number of candidates per signal track

Performance

Number of candidates per signal track

Parameterization instead of fitting

Using GBL fit within the GENFIT framework

- GBL: Kleinwort C. General Broken Lines as advanced track fitting method http://dx.doi.org/10.1016/j.nima.2012.01.024
- GENFIT: Rauch J., Schlüter T. GENFIT a Generic Track-Fitting Toolkit https://doi.org/10.1088/1742-6596/608/1/012042

Summary

Parameterization-based tracking:

- replaces rigorous model calculations
 by simple analytical parametric functions
- parameters can be tuned based on real data or model (MC or deterministic with covariance)
- enables accurate, efficient, and very fast track finding
- can be used to estimate the kinematic parameters
- works well in P2 due to narrow momentum range