Fundamental Physics at MESA

Niklaus Berger

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

PRISMA Retreat September 2015

Particle Physics: What are the fundamental constituents of matter and how do they interact?

Magnetic moment of the electron:

• Theory:

g_e = -2.002 319 304 363 56 (154)

(Aoyama et al., PRL 109, 111807 (2012))

• Experiment:

g_e = - 2.002 319 304 361 53 (53)

(Hanneke et al. PRL 100, 120801 (2008))

Dark Matter

NASA: HST and Chandra

Dark Matter

75% DARK ENERGY

21% DARK MATTER

> 4% NORMAL MATTER

NASA: HST and Chandra

Matter-Antimatter Asymmetry

10'000'000'000

Antimatter

10'000'000'001

Matter

Matter-Antimatter Asymmetry

Radiation

Us

1

N e V_e 1~

Direct production

Indirect effects in quantum loops

Indirect effects in quantum loops

Large discovery reach if:

- Many incoming particles
- Long lifetime
- Little/very well understood
 Standard Model background

• The Idea:

Searching for new physics with the weak mixing angle

• The Machine:

Mainz Energy-Recovery Superconducting Accelerator

• Experiment I:

Weak mixing angle with P2

• Experiment II:

Dark photons, proton radius etc. with MAGIX

• More experiments:

Dark matter, electron electric dipole moment etc.

The weak mixing angle

(also: Weinberg-angle)

- One of the fundamental parameters of the standard model
- Electroweak symmetry breaking creates photon and $Z^{\rm 0}$
- Angle shows up both in masses and couplings (charges)

$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}$$

$$\cos\theta_W = \frac{m_W}{m_Z}$$

$$\sin^2 \theta_W = \frac{g^{\prime 2}}{g^2 + g^{\prime 2}}$$

- The last slide is true at tree level
- But there are quantum corrections...

Two options:

- Use the masses for the definition: (at all orders of perturbation theory) "On-shell scheme"
- Or use the couplings: (which change with energy, and so does the angle) "MS-scheme"
- Use second option from here on

$$\cos \theta_W = \frac{m_W}{m_Z}$$

$$\sin^2 \theta_W = \frac{{g'}^2}{g^2 + {g'}^2}$$
$$\sin^2 \theta_W(q^2)$$

Contact interactions up to 49 TeV (comparable to LHC at 300 fb⁻¹)

How to measure the weak charge?

Proton Target

• $sin^2\theta_{W} \approx 0.25$: Weak charge is tiny

$$Q_W = 1 - 4\sin^2\theta_W$$

 At low Q²: Asymmetry is tiny (40 parts per billion): need very large statistics

$$A_{PV} = \frac{N_R - N_L}{N_R + N_L} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

• We are subtracting two huge numbers from each other (not really - switching helicity with a few KHz)

PVeS Experiment Summary

- Want to measure $\sin^2\theta_w$ to 0.13%
- Need Q_{w} at 1.5%

$$\frac{\Delta \sin^2 \theta_W}{\sin^2 \theta_W} = \frac{1 - 4 \sin^2 \theta_W}{4 \sin^2 \theta_W} \frac{\Delta Q_W}{Q_W}$$

- Essentially means 1.5% on $\rm A_{\rm PV}$
- A_{PV} is 40 parts per billion
- + $\delta(A_{PV})$ is 0.6 parts per billion
- N a few 10¹⁸

 $\delta(A_{PV}) \propto \frac{1}{\sqrt{N}}$

- Measure 10'000 hours (absolute maximum anyone thinks shifts are organisable)
- Need close to 10¹¹ electrons/s 100 GHz

Yes!

• 150 μ A of electron beam current

- Luminosity 2.4 10³⁹ s⁻¹cm⁻²
- Integrate 8.6 ab⁻¹

Electron beam

Proton Target

Detector

10'000 hours is 417 days 24/7 of measurements

Hard to get that amount of time at a shared accelerator facility...

If you cannot rent it, build it:

The MESA accelerator

Mainz Energy-recovery Superconducting Accelerator

- Beam current 150 μA
- Polarisation > 85%
- High precision polarimetry
- High runtime (more than 4000 h/year)

1010

cryomodules

- Fit into existing halls at MAMI
- Extremely stable

Niklaus Berger – PRISMA September 2015 – Slide 44

external

Experiment

"P2"

internal

experiment

NNA

The main worry are beam fluctuations correlated with the helicity:

	Achieved at MAMI	sin ² θ_w uncertainty	requirement
 Energy fluctuations: 	0.04 eV	< 0.1 ppb	ok!
 Position fluctuations 	3 nm	5 ppb	0.13 nm
 Angle fluctuations 	0.5 nrad	3 ppb	0.06 nrad
 Intensity fluctuations 	14 ppb	4 ppb	0.36 ppb

Teichert et al. NIM A 557 (2006) 239

- Can we go to higher beam currents?
 - In principle yes...
 - But power is expensive
 - Why dump electrons?

• Can go up to 1 (10) mA beam current

P2:

How to detect 100 GHz of (the right) electrons...

Tracking a lot of low momentum particles

- Low momentum electrons:
 Thin detectors
- Very high rates: Fast and granular detectors

Fast, thin, cheap pixel sensors

High Voltage Monolithic Active Pixel Sensors

Fast and thin sensors: HV-MAPS

N-well E field P-substrate Particle

High voltage monolithic active pixel sensors - Ivan Perić

- Use a high voltage commercial process (automotive industry)
- Small active region, fast charge collection via drift
- Implement logic directly in N-well in the pixel - smart diode array
- Can be thinned down to < 50 μ m
- Logic on chip: Output are zero-suppressed hit addresses and timestamps

(I.Peri**ć**, P. Fischer et al., NIM A 582 (2007) 876)

MUPIX6

HV-MAPS chips: AMS 180 nm HV-CMOS

- 5 generations of prototypes
- Current generation: MUPIX7
 40 x 32 pixels
 80 x 103 µm pixel size
 9.4 mm² active area
- MUPIX7 has all features of final sensor
- Left to do: Scale to $2 \times 2 \text{ cm}^2$

Position resolution given by pixel size

Hit efficiency above 99% without tuning

Built our own pixel telescope

- Four planes of thin Mupix sensors
- Fast readout into PCIe FPGA cards
- Currently about 1 MHz hits/plane possible
- Tested at DESY, PSI and MAMI

- 50 µm silicon
- 25 µm Kapton[™] flexprint with aluminium traces
- 25 µm Kapton™ frame as support
- Less than 1‰ of a radiation length per layer

Where are the neutrons in the nucleus?

Where are the neutrons in the nucleus?

• Gives access to the equation of state of neutron matter

• Tells us how big/small neutron stars are

- Not charged: Photons not a good probe
- Use parity violating electron scattering: Proton weak charge is almost zero see mostly neutrons

$$A_{PV} = \frac{G_F Q^2}{2\pi\alpha\sqrt{2}} \left(\underbrace{1 - 4\sin^2\theta_W}_{\approx 0} - \frac{F_n(Q^2)}{F_p(Q^2)} \right)$$

And now for something different:

MAGIX

Mesa Gas Internal Target Experiment

Energy recovery: We want the beam back

- Energy loss less than 10⁻³
- As little scattering as possible

No target window

High resolution spectrometer

- No beam interactions in target window
- As little scattering as possible

Thin walls, thin detectors

Extremely intense beam: Do not need very high acceptance

• Inject gas directly into the beam pipe

• Differential pumping to keep beam vacuum

Twin-arm dipole spectrometer

- Image momentum to position
- 10⁻⁴ momentum resolution for 50 μ m position resolution

Image angle to position

Gas Electron Multipliers (GEMs)

- Metalized Kapton foil with tiny holes
- Apply electric field

Niklaus Berger – PRISMA September 2015 – Slide 84

Gas Electron Multipliers (GEMs)

- Metalized Kapton foil with tiny holes
- Apply electric field
- Stack GEMs to reduce ion back drift
- PRISMA detector lab

The proton, dark photons and more:

Physics at MAGIX

 Measure in scattering experiments (Mainz!)

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)
- Lamb shift is tiny except in muonic hydrogen

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)
- Lamb shift is tiny except in muonic hydrogen
- Big surprise!
 4 7 σ discrepancy why?

Iaure

111 295

OIL SPILLS There's more to come PLAGIARISM

8 July 2010 www.nature.com/nature £10

It's worse than you think CHIMPANZEES

The battle for survival

SHRINKING THE PROTON

New value from exotic atom trims radius by four per cent

Could scientists be seeing signs of a whole new realm of physics?

270101

The

People Who A New Way Remember Everything to Tame Cancer

SCIENTIFIC

AMEBICAN

The Benefits of Video Games (Really)

NATURE 1005 Researchers for hire

- Scattering experiments happen at finite momentum transfer Q^2
- They will see some of the proton substructure
- Charge radius is defined at $Q^2 = 0$
- Need to extrapolate: Potentially large error
- Want to measure at as small Q² as possible

There is dark matter out there...

- There could be additional U(1) gauge symmetries with an exchange particle (dark photon, mass m_y)
- It could mix with the photon via heavy fermions (mixing parameter ε)
- It would then show up as a bump in the e⁺e⁻ spectrum

Dark Matter with the Beam Dump

BDX

MESA: More than 10²² electrons hit beam dump per year

- Some of them could produce dark matter particles
- "Dark matter beam"

And one more:

Electric dipole moment of electrons

- An EDM of a fundamental particle violates CP and T
- Essentially 0 in the SM (tiny contribution from CKM)
- Potentially large in BSM models
- Some more CP violation needed

Necessary conditions to create baryon asymmetry:

Matter-Antimatter Asymmetry

Baryon number violation

10'000'000'000 10'000'000'001 Antimatter Matter

- C and CP violation
- Out of thermal equilibrium

$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E} + \vec{\mu} \times \vec{B}$

- Spin precesses in magnetic field due to magnetic dipole moment $\boldsymbol{\mu}$
- Spin precesses in electric field due to electric dipole moment d
- $\boldsymbol{\mu}$ is large, d is almost zero

$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E} + \vec{\mu} \times \vec{B}$

For neutral particles:

- Put in a "box"
- Apply large E-field
- Watch precession
- E.g.: Neutron EDM

For charged particles:

- E field leads to acceleration
- Put electron into a neutral, polar molecule (ACME, Imperial/Sussex)
- Put electron/proton/deuteron etc. in a storage ring

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{S}$$

• Electric and magnetic fields perpendicular to momentum

$$\vec{\Omega} = \frac{q}{m} \left(a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{v} \times \vec{E}) + \frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B} \right) \right)$$

Magnetic dipole Electric dipole
$$a = \frac{g - 2}{2} \quad \vec{\mu} = 2(a + 1) \frac{q}{2m} \vec{S} \quad \vec{d} = \eta \frac{q}{2m} \vec{S}$$

• How to get rid of magnetic part?

• No magnetic field!

$$\vec{\Omega} = \frac{q}{m} \left(a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{v} \times \vec{E}) + \frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B} \right) \right)$$

Magnetic dipole Electric dipole

- No magnetic field!
- Magic momentum!

$$\vec{\Omega} = \frac{q}{m} \left(a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{v} \times \vec{E}) + \frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B} \right) \right)$$

Magnetic dipole Electric dipole

- 0.7 GeV/c for protons
- 14.5 MeV for electrons

- Magic momentum
- Spin rotates with momentum vector
- EDM leads to out of plane precession
- Counter-rotating bunches help to cancel systematics

- Need very low magnetic field
- Good control of electric field

$|d_e| < 8.7 \times 10^{-29} e \cdot \text{cm} \text{ (ThO)}$

ACME collaboration, Science 343, 269 (2104)

- Very hard to compete with molecules for limits ...
- ... but only option for a precise measurement ...
- ... and a pathfinder for the proton EDM (Jülich, Korea...)

Exciting physics program at MESA:

- Weak • Also
 - Weak mixing angle measurement with P2
 - Also gives access to neutron skins
 - Proton radius, dark photon and much more with MAGIX

- Second generation of experiments:
 Beam dump dark matter and electron EDM
- Start 2019/2020

