Fundamental Physics

at

Niklaus Berger
Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

Particle Physics:

What are the fundamental constituents of matter and how do they interact?

ゃ
The Standard Model of Elementary Particles

() Hugely successful

Magnetic moment of the electron:

H

- Theory:
$g_{e}=-2.00231930436356(154)$
(Aoyama et al., PRL 109, 111807 (2012))
- Experiment:

$$
g_{e}=-2.00231930436153(53)
$$

(Hanneke et al. PRL 100, 120801 (2008))

Open Questions?

Dark Matter

Dark Matter

75\%
DARK
ENERGY

$$
21 \% \text { DARK }
$$

NASA: HST and Chandra-

Matter-Antimatter Asymmetry

$10^{\prime} 000^{\prime} 000^{\prime} 000$ 10'000'000'001
 Antimatter
 Matter

Matter-Antimatter Asymmetry

Radiation

Gravity

c
The Structure of the Standard Model

H
(D) The Structure of the Standard Model

Neutrinos

(The Structure of the Standard Model

(The Structure of the Standard Model

(The Structure of the Standard Model

Direct production

Indirect effects in quantum loops

Indirect effects in quantum loops

Large discovery reach if:

- Many incoming particles
- Long lifetime
- Little/very well understood Standard Model background
- The Idea:

Searching for new physics with the weak mixing angle

- The Machine:

Mainz Energy-Recovery Superconducting Accelerator

- Experiment I:

Weak mixing angle with P2

- Experiment II:

Dark photons, proton radius etc. with MAGIX

- More experiments:

Dark matter, electron electric dipole moment etc.

The weak mixing angle
(also: Weinberg-angle)

- One of the fundamental parameters of the standard model
- Electroweak symmetry breaking creates photon and Z^{0}

$$
\binom{\gamma}{Z^{0}}=\left(\begin{array}{cc}
\cos \theta_{W} & \sin \theta_{W} \\
-\sin \theta_{W} & \cos \theta_{W}
\end{array}\right)\binom{B^{0}}{W^{0}}
$$

- Angle shows up both in masses and couplings (charges)
$\cos \theta_{W}=\frac{m_{W}}{m_{Z}}$
$\sin ^{2} \theta_{W}=\frac{g^{\prime 2}}{g^{2}+g^{\prime 2}}$

Which weak mixing angle?

- The last slide is true at tree level
- But there are quantum corrections...

Two options:

- Use the masses for the definition: (at all orders of perturbation theory) "On-shell scheme"

$$
\cos \theta_{W}=\frac{m_{W}}{m_{Z}}
$$

- Or use the couplings:
(which change with energy, and so does the angle)
"MS-scheme"
- Use second option from here on
$\sin ^{2} \theta_{W}=\frac{g^{\prime 2}}{g^{2}+g^{\prime 2}}$
$\sin ^{2} \theta_{W}\left(q^{2}\right)$

Weak mixing angle and charges

© Scale dependence (running) of $\sin ^{2} \theta_{w}$

(Scale dependence (running) of $\sin ^{2} \theta_{w}$

(Scale dependence (running) of $\sin ^{2} \theta_{W}$

(New Physics in the running

© Dark Z in mixing

Niklaus Berger - PRISMA September 2015 - Slide 28

Contact Interactions

Contact interactions up to
49 TeV
(comparable to LHC at $300 \mathrm{fb}^{-1}$)

Niklaus Berger - PRISMA September 2015 - Slide 29

How to measure the weak charge?

Weak mixing angle and charges

(C)Weak mixing angle and charges

Parity violating electron scattering

Parity violating electron scattering

$A_{P V}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}$

© Parity violating electron scattering

$$
A_{P V}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}=\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\left(Q_{W}-F\left(Q^{2}\right)\right)
$$

(Parity violating electron scattering

Momentum transfer

Proton structure -

(Parity violating electron scattering
Momentum transfer
sets scale
$A_{P V}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}=\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}$ what we want

Proton structure small nuisance if Q^{2} small
$\left.-F^{\swarrow}\left(Q^{2}\right)\right)$ Detector
$\sin ^{2} \theta_{W}=\frac{1-Q_{W}}{4}$
Electron beam

Proton Target
(Why is this difficult?

- $\sin ^{2} \theta_{W} \approx 0.25$: Weak charge is tiny

$$
Q_{W}=1-4 \sin ^{2} \theta_{W}
$$

- At low Q^{2} : Asymmetry is tiny (40 parts per billion): need very large statistics
$A_{P V}=\frac{N_{R}-N_{L}}{N_{R}+N_{L}}=\frac{G_{F} Q^{2}}{4 \sqrt{2} \pi \alpha}\left(Q_{W}-F\left(Q^{2}\right)\right)$
- We are subtracting two huge numbers from each other (not really - switching helicity with a few KHz)

PVeS Experiment Summary

How much statistics do we need?

- Want to measure $\sin ^{2} \theta_{w}$ to 0.13%
- Need $Q_{4 y}$ at 1.5%

$$
\frac{\Delta \sin ^{2} \theta_{W}}{\sin ^{2} \theta_{W}}=\frac{1-4 \sin ^{2} \theta_{W}}{4 \sin ^{2} \theta_{W}} \frac{\Delta Q_{W}}{Q_{W}}
$$

- Essentially means 1.5% on $A_{P V}$
- $A_{\text {pV }}$ is 40 parts per billion
- $\delta\left(\mathrm{A}_{\mathrm{pV}}\right)$ is 0.6 parts per billion

$$
\delta\left(A_{P V}\right) \propto \frac{1}{\sqrt{N}}
$$

- Na a few 10^{18}
- Measure 10'000 hours (absolute maximum anyone thinks shifts are organisable)
- Need close to 10^{11} electrons/s - 100 GHz

ట
 Can we get that rate?

Yes!

- $150 \mu \mathrm{~A}$ of electron beam current
- 60 cm long liquid hydrogen target
- Luminosity $2.410^{39} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$
- Integrate 8.6 ab $^{-1}$

Electron beam

Proton Target
$10^{\prime} 000$ hours is 417 days $24 / 7$ of measurements

Hard to get that amount of time at a shared accelerator facility...

If you cannot rent it, build it:

The MESA accelerator

Mainz Energy-recovery Superconducting Accelerator

®
 Requirements

- Beam current $150 \mu \mathrm{~A}$
- Polarisation > 85\%
- High precision polarimetry
- High runtime (more than 4000 h/year)
- Fit into existing halls at MAMI
- Extremely stable

The main worry are beam fluctuations correlated with the helicity:
Achieved at MAMI $\sin ^{2} \theta_{w}$ uncertainty requirement

- Energy fluctuations:
- Position fluctuations
- Angle fluctuations
- Intensity fluctuations
0.04 eV

3 nm
0.5 nrad

14 ppb

$$
\begin{array}{cc}
\sin ^{2} \theta_{w} \text { uncertainty } & \text { requirer } \\
<0.1 \mathrm{ppb} & \text { ok! }
\end{array}
$$

5 ppb
0.13 nm

3 ppb
0.06 nrad

4 ppb
0.36 ppb

®

©
 Superconducting Cryomodules

Teichert et al. NIM A 557 (2006) 239

Can we go to higher beam currents?

- In principle yes...
- But power is expensive
- Why dump electrons?

Energy recovery

- Put energy back into field!
- Can go up to 1 (10) mA beam current

©

P2:

How to detect 100 GHz of (the right) electrons...

Choice of scattering angle

©
 Solenoid spectrometer

© Solenoid spectrometer

©
 Counting detectors

ట
 Integrating detectors

(Q) Quartz-Bars \& Photomultipliers

Measuring Q^{2} :

Tracking a
 lot of low momentum particles

- Low momentum electrons:

Thin detectors

- Very high rates:

Fast and granular detectors

Fast, thin, cheap pixel sensors

High Voltage Monolithic Active Pixel Sensors

High voltage monolithic active pixel sensors - Ivan Perić

- Use a high voltage commercial process (automotive industry)

- Small active region, fast charge collection via drift
- Implement logic directly in N -well in the pixel - smart diode array
- Can be thinned down to $<50 \mu \mathrm{~m}$
- Logic on chip: Output are zero-suppressed hit addresses and timestamps
(I.Perić, P. Fischer et al., NIM A 582 (2007) 876)
(The MUPIX chip prototypes

HV-MAPS chips: AMS 180 nm HV-CMOS

- 5 generations of prototypes
- Current generation:

MUPIX7
40×32 pixels
$80 \times 103 \mu \mathrm{~m}$ pixel size
$9.4 \mathrm{~mm}^{2}$ active area

- MUPIX7 has all features of final sensor
- Left to do: Scale to $2 \times 2 \mathrm{~cm}^{2}$
(Test beam at DESY

(Position Resolution

Position resolution given by pixel size

Efficiency

Hit efficiency above 99% without tuning

Time resolution

((Mupix Telescope

Built our own pixel telescope

- Four planes of thin Mupix sensors
- Fast readout into PCle FPGA cards
- Currently about 1 MHz hits/plane possible
- Tested at DESY, PSI and MAMI

() Mechanics

- $50 \mu \mathrm{~m}$ silicon

- $25 \mu \mathrm{~m}$ Kapton ${ }^{\text {TM }}$ flexprint with aluminium traces
- $25 \mu \mathrm{~m}$ Kapton $^{\text {TM }}$ frame as support
- Less than 1% of a radiation length per layer

${ }^{2}$

Neutron Skins

Where are the neutrons in the nucleus?

Balanced Nudes

Neutrom-rim
Nuclew

Neutron Skins

Where are the neutrons in the nucleus?

- Gives access to the equation of state of neutron matter

Balanced Nares

Neutrom-rien Nuclew

(How to see the neutrons?

- Not charged: Photons not a good probe
- Use parity violating electron scattering: Proton weak charge is almost zero see mostly neutrons

$A_{P V}=\frac{G_{F} Q^{2}}{2 \pi \alpha \sqrt{2}}(\underbrace{1-4 \sin ^{2} \theta_{W}}-\frac{F_{n}\left(Q^{2}\right)}{F_{p}\left(Q^{2}\right)})$
≈ 0

And now for something different:

MAGIX

Mesa Gas Internal Target Experiment

(MAGIX Spectrometer

Requirements

Energy recovery: We want the beam back

- Energy loss less than 10^{-3}
- As little scattering as possible

No target window

High resolution spectrometer

- No beam interactions in target window
- As little scattering as possible

Thin walls, thin detectors

Extremely intense beam: Do not need very high acceptance

- Inject gas directly into the beam pipe

Beam

- Differential pumping to keep beam vacuum

(TARDIS

Twin-arm dipole spectrometer

© TARDIS

- Image momentum to position
- Image angle to position
- 10^{-4} momentum resolution for $50 \mu \mathrm{~m}$ position resolution

(Focal plane detectors

The proton, dark photons and more:

Physics at MAGIX

Proton Radius Puzzle

How big is a proton?
(electromagnetic charge radius)

- Measure in scattering experiments (Mainz!)

Proton Radius Puzzle

How big is a proton?
(electromagnetic charge radius)

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)

Proton Radius Puzzle

How big is a proton?
(electromagnetic charge radius)

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)
- Lamb shift is tiny - except in muonic hydrogen

Proton Radius Puzzle

How big is a proton?
(electromagnetic charge radius)

- Measure in scattering experiments (Mainz!)
- Measure in spectroscopy (Lamb-shift)
- Lamb shift is tiny - except in muonic hydrogen

- Big surprise!

4-7 σ discrepancy - why?

©
 Scattering, Q^{2} and substructure

- Scattering experiments happen at finite momentum transfer Q^{2}
- They will see some of the proton substructure
- Charge radius is defined at $Q^{2}=0$
- Need to extrapolate: Potentially large error
- Want to measure at as small Q^{2} as possible

(C) Dark photons

There is dark matter out there...

- There could be additional $U(1)$ gauge symmetries with an exchange particle (dark photon, mass $m_{\gamma^{\prime}}$)
- It could mix with the photon via heavy fermions (mixing parameter ε)
- It would then show up as a bump in the $\mathrm{e}^{+} \mathrm{e}^{-}$spectrum

(C) Invisible dark photons

(2ark photons

Dark Matter with the Beam Dump

BDX

®
 Search for dark matter

MESA: More than 10^{22} electrons hit beam dump per year

- Some of them could produce dark matter particles
- "Dark matter beam"
- Detect with DM detector (xenon?)

(Beam dump dark matter

And one more:

Electric dipole moment of electrons

- An EDM of a fundamental particle violates CP and T
- Essentially 0 in the SM (tiny contribution from CKM)
- Potentially large in BSM models
- Some more CP violation needed

Sakharov Criteria

Necessary conditions to create baryon asymmetry:

- Baryon number violation
- C and CP violation
- Out of thermal equilibrium

Antimatter

Matter

(Dipole moments and precession

$$
\frac{d \vec{s}}{d t}=\vec{d} \times \vec{E}+\vec{\mu} \times \vec{B}
$$

- Spin precesses in magnetic field due to magnetic dipole moment μ
- Spin precesses in electric field due to electric dipole moment d
- μ is large, d is almost zero
(Charged particle EDMs

$$
\frac{d \vec{s}}{d t}=\vec{d} \times \vec{E}+\vec{\mu} \times \vec{B}
$$

For neutral particles:

- Put in a "box"
- Apply large E-field
- Watch precession
- E.g.: Neutron EDM

For charged particles:

- E field leads to acceleration
- Put electron into a neutral, polar molecule (ACME, Imperial/Sussex)
- Put electron/proton/deuteron etc. in a storage ring
(Precession in a storage ring

$$
\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{S} \quad \begin{gathered}
\text { Electici and maneriticifled } \\
\text { pependiducuarto monentum }
\end{gathered}
$$

$\vec{\Omega}=\frac{q}{m}\left(a \vec{B}+\left(a-\frac{1}{\gamma^{2}-1}\right)(\vec{v} \times \vec{E})+\frac{\eta}{2}(\vec{E}+\vec{v} \times \vec{B})\right)$ Magnetic dipole

Electric dipole

$$
a=\frac{g-2}{2} \quad \vec{\mu}=2(a+1) \frac{q}{2 m} \vec{S} \quad \vec{d}=\eta \frac{q}{2 m} \vec{S}
$$

- How to get rid of magnetic part?

- No magnetic field!

(about $10 \mathrm{MV} / \mathrm{m}$ electric field)
$\vec{\Omega}=\frac{q}{m}\left(a \vec{B}+\left(a-\frac{1}{\gamma^{2}-1}\right)(\vec{v} \times \vec{E})+\frac{\eta}{2}(\vec{E}+\vec{v} / \vec{B})\right)$
Magnetic dipole \quad Electric dipole

- No magnetic field!
- Magic momentum!

$$
\begin{gathered}
\vec{\Omega}=\frac{q}{m}\left(a / B+\left(a-\frac{\eta}{\gamma^{2}-1}\right)(\vec{v} \times \vec{E})+\frac{\eta}{2}(\vec{E}+\vec{v} / \vec{B})\right) \\
\text { Magnetic dipole } \quad \text { Electric dipole }
\end{gathered}
$$

- $0.7 \mathrm{GeV} / \mathrm{c}$ for protons
- 14.5 MeV for electrons

(Build an electric-only storage ring

- Magic momentum
- Spin rotates with momentum vector
- EDM leads to out of plane precession
- Counter-rotating bunches help to cancel systematics
- Need very low magnetic field
- Good control of electric field
$\left|d_{e}\right|<8.7 \times 10^{-29} e \cdot \mathrm{~cm}(\mathrm{ThO})$
ACME collaboration,
Science 343, 269 (2104)
- Very hard to compete with molecules for limits ...
- ... but only option for a precise measurement ...
- ... and a pathfinder for the proton EDM (Jülich, Korea...)

© Summary

Exciting physics program at MESA:

- Weak mixing angle measurement with P2
- Also gives access to neutron skins
- Proton radius, dark photon and much more with MAGIX
- Second generation of experiments: Beam dump dark matter and electron EDM
- Start 2019/2020

