Track Reconstruction for the P2 Experiment

Alexey Tyukin

Mainz Institute for Nuclear Physics DPG Tagung 2016

03.02.2016

Motivation for measuring θ_W at low Q^2

• The Weinberg (Weak Mixing) angle $\theta_W \approx 28.75^\circ$ is a fundamental parameter of GWS theory of electroweak unification

$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \cos(\theta_W) & \sin(\theta_W) \\ -\sin(\theta_W) & \cos(\theta_W) \end{pmatrix} \cdot \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}$$
(1)

$$\sin^{2}(\theta_{W}) = \frac{g_{e}^{2}}{g_{w}^{2}} = 1 - \frac{M_{W}^{2}}{M_{Z}^{2}} \approx 0.2314$$
⁽²⁾

- θ_W is a free parameter of SM which is related to many other quantities
- Precise determination of $\sin^2(\theta_W)$ would verify SM or provide new physics
- Low and high energy scale is sensitive to different types of new physics
- Inconsistent results of previous measurements must be resolved

Measurements of $\sin^2(\theta_W)$

- Running of $\sin^2(\theta_W)$ due to radiative corrections
- From Z^0 pole at 91 GeV to low energies a 3% shift is expected
- P2 Experiment: at Q = 0.07 GeV with 0.13% precision

- Atomic Parity Violation
- Moeller scattering
- Neutrino scattering
- pp collisions
- e^+e^- collisions
- Deep inelastic e⁻ scattering
- Parity violating e⁻ scattering

- Scattering of longitudinally polarized electrons on a proton target.
- EM-cross section dominates: $\sigma_{\gamma} \gg \sigma_{Z}$.
- Z^0 cross section depends on helicity of electron: $\sigma_Z^R \neq \sigma_Z^L$.
- Parity-violating asymmetry can be calculated from scattering rates:

$$A^{\mathsf{PV}} = \frac{\sigma^{\mathsf{L}} - \sigma^{\mathsf{R}}}{\sigma^{\mathsf{L}} + \sigma^{\mathsf{R}}} = \frac{G_{\mathsf{f}} Q^2}{4\pi\alpha\sqrt{2}} \cdot \left(\underbrace{1 - 4\sin^2\theta_W}_{Q_{\mathbf{W}}(p)} + F(Q^2)\right)$$

Kinematics

Choice of energy and scattering angle to minimize $\Delta \sin^2(\theta_W)$: At lower Q^2 cross section gets higher, but asymmetry smaller

Beam : $E_{beam} = 150 \text{ MeV}$, $I_{beam} = 150 \ \mu\text{A} = 10^{15} \ e^{-}/s$, Target: 60 cm liquid hydrogen , $L = 2.4 \cdot 10^{39} \text{s}^{-1} \text{cm}^{-2}$ Experiment: $\theta_{\text{scattering}} = 35^{\circ}$, observing 10^{11} electrons per second Asymmetry: $A_{PV} = 33 \text{ ppb}$, $\Delta A_{PV} = 1.5\% = 0.44 \text{ ppb}$ Weinberg angle error: $\Delta \sin^{2}(\theta_{W}) = 0.13\%$ after 10000 h

MESA - Mainz Energy-Recovering Superconducting Accelerator

A new accelerator is being built in Mainz which will allow a next generation $\mathsf{PV}\text{-}\mathsf{Experiment}$

- 85% polarisation
- High position, intensity and energy stability
- Minimization of false asymmetries

Counting 100 GHz of elastically scattered signal electrons while suppressing most of the background:

- 60 cm IH₂ target
- Solenoid magnet focusing scattered e⁻
- Tracking Planes
- Integrating cherenkov counters
- Shield against photons and Moeller-electrons

- Four tracking planes in 2 pairs inside the magnet
- Track the electrons before they reach the counting detector
- Tracking planes partially not shielded from photons
- No full azimuthal coverage necessary, very high electron rates

Tracking Planes

Tracking planes built out of silicon pixel chips (HV-MAPS, designed for Mu3e Experiment) :

- Pixel size 80 \times 80 $\mu \rm m,$ chip size up to 2x2 $\rm cm^2$
- $\bullet\,$ Only 50 $\mu{\rm m}$ thickness, fast response, radiation hard

Backgrounds of an unshielded detector plane:

- Bremsstrahlung photons dominate
- Far more hits from background than from signal
- Definitive solution: reduce beam current for Q² measurement

Track reconstruction

Challenges:

- Inhomogeneous magnetic field
- Planes cause multiple scattering
- Vertex position not known
- Energy loss in Target
- Online tracking

Assuming 4 hits belong to a track:

- Find a track which minizes χ^2
- Reconstruct momentum vector e.g. at first plane
- Propagate back to target
- Set point of closest approach to target center as vertex
- Reconstruct scattering angle

Solution:

• Runge-Kutta-Nystroem propagator and General Broken Lines (C.Kleinwort) fit.

- Get reconstruction quality by comparing with Monte-Carlo simulation value
- Residual width of 0.00028 GeV^2/c^2 is an average of 4.2% resolution.

Summary

- The P2 Experiment is planning a measurement of $\sin^2(\theta_W)$ with 0.13% precision
- A new accelerator will be built to make it possible
- The P2 Spectrometer will measure A_{PV} of 100 GHz elastically scattered electrons on liquid hydrogen
- Silicon pixel tracking planes will measure average Q^2

Backup: Future measurements

arXiv:1402.3620v2 , 21. Feb 2014

Backup: $\Delta \sin^2(\theta_W)$ optimiziation

Backup: Angle reconstruction

reconstructed theta

reconstructed absolute momentum

